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Hello everyone. Welcome to another lecture of the course mathematical aspects of biomedical 

electronic system design.  
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Today's lecture will be the last one on linear algebra. In this lecture, we will look at system of 

linear equations, Cramer's rule, Gaussian Elimination something called row echelon form of 

matrices, we will also see various uses of Gaussian Elimination. So, let us begin today's lecture. 
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We will start with the system of linear equations. So, to begin with let us fix numbers, a1 to an. 

These are real numbers and another one b and also consider variables x1 to xn, these are real 

variables and consider the following equation  

𝑎1𝑥1 + 𝑎2𝑥2 + ⋯……𝑎𝑛𝑥𝑛 = 𝑏. 

This equation is called a linear equation in variables x1 to xn.  

a1 to an are called coefficients, x1 to xn are called unknowns or indeterminants. b is called 

constant term it is again a real number it is called constant term. Now, any values of x1 to xn 

that satisfy this equation are called solution to this equation. Any values of x1,....., xn that satisfy 

the above equation is called a solution.  
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Let us consider an example. Consider following equation 2𝑥 + 3𝑦 + 4𝑧 = 5. It can be easily 

seen that (1, 1, 0) that is x = 1, y = 1 and z = 0 satisfies the above equation. Moreover, (-1, 1, 

1) also satisfies the above equation. -2+3+4 = 5. So, this also satisfies the above equation. So, 

as per the statement above (1, 1, 0) and (-1, 1, 1) are solutions to the above equation.  

So, we see that an equation can have more than one solution. Now, let us extend this these 

observations to more than one equations. So, now we will fix numbers. Numbers aij where i 

each ranging from 1 to n and the j is ranging from 1 to m, also fix b1 … bm and consider 

variables as before n variables x1 to xn. 
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With these numbers and variables let us write the following equations. a11x1 + a12x2 … a1nxn = 

b1. a21x1 + a22x2 + … a2nxn = b2 and so on. We have m equations like this the last one being 

am1x1 + am2x2 +… amnxn = bn. Now, we rather than one equation we have m equations. This 

system is called the set is called system of linear equations.  

This set of equations is called, also called a system of linear equations. Let us now define a 

matrix A and vectors x and b as follows, define A to be the following matrix,  

𝐴 = [

𝑎11 𝑎12 ……… 𝑎1𝑛

𝑎21 𝑎22 ……… 𝑎2𝑛

𝑎𝑚1 𝑎𝑚2 ……… 𝑎𝑚𝑛

]. 
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And vectors b to be  

𝑏 =

[
 
 
 
 
 
𝑏1

.

.

.

.
𝑏𝑚]

 
 
 
 
 

      𝑎𝑛𝑑  𝑥 =

[
 
 
 
 
 
𝑥1

.

.

.

.
𝑥𝑛]

 
 
 
 
 

. 

Then the above system of equations can be compactly represented as the matrix equation Ax = 

b. The above system of equations can be compactly represented as matrix equation Ax = b. 

Following the terminology for single linear equation, here A is called matrix of coefficients, b 

is called vector of constant terms and x is called vector of unknowns or indeterminants.  

When analyzing the above system of linear equations in the following, we will come across 

another matrix which is obtained as follows. Here we write a which is  



[

𝑎11 𝑎12 ……… 𝑎1𝑛   .  𝑏1

𝑎21 𝑎22 ……… 𝑎2𝑛  .  𝑏2

𝑎𝑚1 𝑎𝑚2 ……… 𝑎𝑚𝑛  .  𝑏𝑚

] ∈ ℝ𝑚×(𝑛+1). 
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It is compactly represented as follows and it is referred to as augmented matrix. In case of a 

system of linear equations the system can have no solution, one solution or infinitely many 

solutions. Let me elaborate. The system of equations Ax = b will always have a solution if b = 

0, in that case the system of equations is called a homogeneous system of equations.  
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It always has a solution, in particular x = 0 vector itself is a solution. If b ≠ 0, then the system 

of equations is called non-homogeneous set of equations. In this case, there will be no solution, 



if the rank(A) < rank of augmented matrix AB. There will be unique solution, that is, one 

solution if the rank(A) = rank(AB) = n. 
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And there will be infinitely many solutions if a rank(A) = rank(AB) < n. Let us see examples. 

First example is the set of equations x1 + x2 + x3 = 3. x1 + 2x2 + 3x3 = 6. And x2 + 2x3 = 1. In 

this case, the coefficient matrix  

𝐴 = [
1 1 1
1 2 3
0 1 2

] , 𝑏 = [
3
6
1
] , 𝑥 = [

𝑥1

𝑥2

𝑥3

]. 
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The augmented matrix  



(𝐴|𝐵) = [
1 1 1 3
1 2 3 6
0 1 2 1

]. 

Notice that in A, all three rows are not linearly independent. In fact, if I add the first and third 

rows, I get the second row. So, rank(A) = 2, on the other hand, it can be checked that rank(A|B) 

= 3. So, rank(A) < rank(A|B) and so, the system has no solution. Let us see another example. 

Now we have system of equations Ax = b, where  

𝐴 = [
1 1 1
1 2 3
1 1 2

] , 𝑏 = [
3
6
4
]. 
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In this case, it can be check that rank(A) and the rank(A|B) = 3. So, the system has a unique 

solution. Finally, let us consider Ax = b, where A is same as in the first example, that is  

𝐴 = [
1 1 1
1 2 3
0 1 2

] , 𝑏 = [
3
6
3
]. 

Rank(A) = 2 and now it can be seen that rank(A|B) = 2. So, A and the augmented matrix have 

same rank but both is less than the number of variables 3. So, in this case we will have infinitely 

many solutions.  

Now, the question is given a system of linear equations, we want to see if the system will have 

no solution, unique solution or infinitely many solutions and if it has a solution, we want to 

find a solution. We will first see an algorithm that works in the case of unique solution that is, 

it gives the unique solution if the system of linear equations has unique solution and this method 



is called Cramer's rule. Let us see what Cramer's rule is. Cramer’s rule says that for a system 

of equations Ax = b, it is if it has a unique solution, the solution can be obtained as follows. 
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It says that ith unknown xi can be obtained by  

𝑥𝑖 =
det(𝐴𝑖)

det(𝐴)
 

where Ai is the matrix that is obtained by replacing the ith column of A with b. That is Ai is the 

following matrix  

𝐴𝑖 =

[
 
 
 
 
 

𝑎11 …… 𝑎1𝑖−1𝑏1 …… 𝑎1𝑛

𝑎21 …… 𝑎2𝑖−1𝑏2 …… 𝑎2𝑛

.

.

.
𝑎𝑚1 …… 𝑎𝑚𝑖−1𝑏𝑚 …… 𝑎𝑚𝑛]

 
 
 
 
 

 

So, the Cramer’s involves computing n + 1 determinants to obtain n unknowns, to solve for n 

unknowns. As I stated Cramer’s rule works only if the system of equations has a solution and 

has a unique solution. Next, we will see about a method that tells us whether a system of 

equations has no solution, has unique solution or had infinitely many solutions. And in the 

latter cases, it also provides us all the solutions to the equations.  
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We will now see the notion of matrices in row echelon form or simply the row echelon matrices. 

However, I will start with defining what it means by pivot entry of the matrix. So, for a matrix 

say m × n matrix, the leading non-zero entry of any row is called pivot. The leading I mean the 

first non-zero entry of any row is called a pivot.  

For instance, if I consider  

𝐴 = [
1 1 1
0 0 3
0 2 3

] 

then this 1 is the first non-zero entry in the first row, this is first non-zero entry in the second 

row and this is first non-zero entry in the third row. These are the pivots. Next, a matrix is 

called a row echelon form, in short, REF, or it is simply called RE matrix, row echelon matrix 

if the following two conditions are satisfied. First condition is all zero rows, that is, rows with 

no pivots are below non-zero rows.  
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And the second condition is the pivot of a row is to the right of the pivot of the row above it. 

Let us see the examples. Consider  

𝐴 = [
1 0 2
0 0 0
0 1 0

] 

Here we see that the zero row, second row is zero row whereas third row is not. So, first 

condition is violated. So, A is not in the row echelon form or we can simply say that A is not a 

row echelon matrix.  

Similarly, if I consider  

𝐴 = [
0 1 0
1 0 2
0 0 0

] 

again I see that zero rows are below all non-zero rows, but the pivot entry of the second row is 

not on the right of the pivot entry of the row above it. So, this A is also not in row echelon 

form. On the other hand, if you look at the matrix A which is  

𝐴 = [
1 0 2
0 2 3
0 0 0

]. 

This is in row echelon form.  
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Next, we will see the motion of reduced row echelon matrices which are special cases of row 

echelon matrices. Reduced row echelon form in short RREF. The matrix A is called to be an 

RREF if it is in row echelon form and also satisfies the extra conditions that every pivot is 1 

and it is the only non-zero entry in its column. In other words, the pivot columns are standard 

unit vectors. The columns of the pivot are called pivot columns, for instance, in this matrix A 

all three columns are pivot columns. Let us consider again a few examples.  

Let  

𝐴 = [
1 0 1
0 2 0
0 0 0

] 

this matrix is in row echelon form but it is not in row echelon form because the pivot entry in 

the second row is not 1 not in reduced row echelon form. Let us see another example. Now  

𝐴 = [
1 1 2
0 1 1
0 0 0

]. 

Here we see that the pivot entries are all 1 but from the second column which is a pivot column 

is not the standard unit vector.  
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It is not in reduced row echelon form, second column which is a pivot column is not a standard 

unit vector. Let us see one more example. Now,  

𝐴 = [
1 0 2
0 1 3
0 0 1

]. 

Again, we see that the pivot entries are all 1 but this is also not in reduced row echelon form 

because the last column which is a pivot column has other non-zero entries also, other than 

pivot it has other non-zero entries also. It is not in RREF because third column is not a standard 

unit vector. Finally, let us see one more example.  

Where  

𝐴 = [
1 0 2
0 1 3
0 0 0

]. 

Here, we see that all the conditions are satisfied. Namely, the zero row is below the two non-

zero rows. The pivot entries are all 1s, pivot entry in a row is on the right of the pivot entry in 

the row above and all the pivot columns there are two pivot columns here and both are standard 

unit vectors, that is, in both these columns other than pivots all other entries are zero.  

So, A is RRE matrix or A is in reduced row echelon form. Now, we introduce elementary row 

operations. Elementary row operations are functions that map m × n matrices to different m × 

m matrices. There are three elementary row operations which are as follows. The first one is 

multiplying the ith row by non-zero scalar 𝜆. This operation is denoted as Ri to 𝜆Ri. 
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The second elementary row operation is interchanging ith row and jth rows. This one is denoted 

as this and the third elementary row operation is for i ≠ j, replace ith row by its sum with 𝜇 times 

the jth row. This one is denoted as Ri to Ri + 𝜇Rj. Let me illustrate these operations via simple 

examples.  

So, let us consider  

𝐴 = [
𝑎 𝑏
𝑐 𝑑

] 

in this case the elementary row operation R1 to 𝜆R1 produces [
 𝜆𝑎  𝜆𝑏

𝑐 𝑑
]. Similarly, the 

interchange operation produces [
𝑐 𝑑
𝑎 𝑏

]. 
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And the operation R1 to R1 + 𝜇R2 produces  

[
𝑎 + 𝜇𝑐 𝑏 + 𝜇𝑑

𝑐 𝑑
]. 

Any finite composition of elementary row operations is called a row operation. A row operation 

refers to finite composition of elementary row operations.  

For example, an operation that produces that map's matrix to  

[
𝑐 𝑑

𝑎 + 𝜇𝑐 𝑏 + 𝜇𝑑
] 

is row operation because its conversion is obtained by iteratively applying two elementary row 

operations namely R1 to R1 + 𝜇R2 and then exchange of R1 and R2. This is an example of a row 

operation. We will see that any matrix can be mapped to a reduced row echelon matrix using a 

row operation. 
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Let us see how these elementary row operations affect determinants of the mattress. So, let 𝜌 

be an elementary row operation. So, 𝜌 could be one of these three operations. If 𝜌 is Ai going 

to 𝜆Ai, then det(𝜌A) = 𝜆det(A). If 𝜌 is interchange of two rows, then det(𝜌A) = -det(A).  

On the other hand, if 𝜌 is Ai going to Ai + 𝜇Aj then det(𝜌A) = det(A). So, from these we can 

infer that det(𝜌A) ≠ 0 if and only if det(A) ≠ 0.  

We further see that if 𝜌 is an elementary row operation and A is an m × n matrix then   

𝜌(𝐴) = 𝜌(𝐼𝑚)𝐴. 

So, in this way we see that if we know the effect of 𝜌 on the identity matrix, then we also know 

its effect on the matrix A. 
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Next, we will see the notion of a row equivalent matrices. So, 𝐴, 𝐵 ∈ ℝ𝑚×𝑛 are matrices of say 

order are said to be row equivalent if there is row operation that is a composition of finitely 

many elementary row operations that maps A to B. Let us see an example. Let us consider  

𝐴 = [
0 0 4
0 3 0
0 4 2

]  𝑎𝑛𝑑 𝐵 = [
0 0 4
0 4 2
0 3 0

] 

then clearly A and B are row equivalent as B is obtained from A by interchanging second and 

third rows. A and B equivalent.  



(Refer Slide Time: 39:04) 

 

Similarly, if I consider  

𝐶 = [
0 0 4
0 7 2
0 3 0

] 

notice that C is obtained by obtained from B via going R2 + R3. So, C has also been obtained 

from A via a composition of elementary row operations. So, A and C are also row equivalent. 

Next, we see a very important measure which will prove to be quite useful in the remaining of 

the lecture that says that and I will state it as a theorem.  

Every matrix is row equivalent to a unique row reduced echelon matrix. In fact, given a matrix 

A we can apply a sequence of elementary row operations to map it or to convert it to its unique 

equivalent reduced row echelon matrix. This successive application of elementary row 

operations is what is referred to as Gaussian Elimination. Successive application of elementary 

row operations is called Gaussian elimination.  
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We now illustrate Gaussian elimination via an example. Consider  

𝐴 = [

0 0 4 1
0 3 0 1
0 0  0 0
0 4 2 0

]. 

Now, we will do a sequence of elementary row operations to convert it to a row reduced row 

echelon matrix. Apply interchange of R3 and R4 and we will get  

[

0 0 4 1
0 3 0 1
0 4 2 0
0 0 0 0

]. 

Next, apply interchange of R1 and R2 and this way we will get  

[

0 3 0 1
0 0 4 1
0 4 2 0
0 0 0 0

]. 

We see that the pivot element in the first row is 3. So, we apply R1 to 
1

3
R1 to get  

[
 
 
 
 0 1 0  

1

3
0 0 4 1
0 4 2 0
0 0 0 0 ]

 
 
 
 

. 
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Next, we see that the second column which is a pivot column, it is not a standard unit vector. 

To fix this, we apply R3 to R3 - 4R1 and we get  

[
 
 
 
 
 0 1 0  

1

3
0 0 4 1

0 0 2 −
4

3
0 0 0 0 ]

 
 
 
 
 

. 

Now we will focus on second row and we see that the pivot element here is 4. So, we apply R2 

to 
𝑅2

4
 to get  

[
 
 
 
 
 
 0 1 0  

1

3

0 0 1 
1

4

0 0 2 −
4

3
0 0 0 0 ]

 
 
 
 
 
 

. 
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Now, we see that again the third column which is a pivot column is not a standard unit vector 

to fix this we apply R3 - 2R2 to get  

[
 
 
 
 
 
 0 1 0  

1

3

0 0 1 
1

4

0 0 0 −
11

6
0 0 0 0 ]

 
 
 
 
 
 

. 

Now, we will look at the third row and notice that the pivot entry is not 1. To fix that we apply 

R3 to −
6

11
 and this way we get  

[
 
 
 
 
 0 0 0  

1

3

0 0 1 
1

4
0 0 0 1
0 0 0 0 ]

 
 
 
 
 

. 

Finally, we see that the fourth column which is also now a pivot column is not a standard unit 

vector. To fix this we apply R1 to R1 −
1

3
 R3 and R2 to R2 −

1

4
R3 to get  

[

0 1 0  0
0 0 1 0
0 0 0 1
0 0 0 0

] 



and this is the reduced row echelon matrix. So, we saw how we could apply a sequence of 

elementary row operations to convert A to its equivalent reduced row echelon matrix.  
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We will now see several uses of Gaussian elimination or uses of reduction to RRE form. The 

first application is compute computation of determinants. We have seen how elementary row 

operations affect the determinant of matrices, we can now adopt the following procedure to 

compute determinant of any matrix. Given a matrix A say of order n × n, we can reduce A to 

reduce row echelon form.  

In fact, we can stop the Gaussian elimination procedure as soon as we will get a upper triangular 

matrix. Stop Gaussian elimination once an upper triangular matrix is obtained. So, we need not 

go all the way to reduced row echelon matrix. Now, we can easily write the determinant of the 

upper triangular matrix swapped in. So suppose Gaussian elimination stops at B, then we know 

the determinant of B is just the product of Bii, i = 1 to n.  
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Now, we also know how the determinant of A is related to determinant of B. We also know the 

relation between determinant of A and determinant of B. We can use this relation to recover 

determinant of A from determinant of B. So, we can use this relation to obtain determinant of 

A. Let us see an example. Consider matrix A  

𝐴 = [
1 1 1 
1 2 1
1 2 3

]. 

Let us start Gaussian elimination in an attempt to convert A to row reduced echelon matrix.  

So, we will first do R2 to R2 - R1 to get  

[
1 1 1 
0 1 0
1 2 3

] 

and we know that determinant of this new matrix is same as det(A). Next, we will do R3 to R3 

- R1 to obtain  

[
1 1 1 
0 1 0
0 1 2

] 

and the determinant of this new matrix also remains unchanged. So, it is same as det(A). Then 

we will do R1 to R1 - R2 and this way we will get  

[
1 0 1 
0 1 0
0 1 2

]. 
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Again, this operation does not alter the determinant. So, determinant remain same as 

determinant of A. Next, we do R3 to R3 - R2 to get  

[
1 0 1 
0 1 0
0 0 2

] 

this operation also does not alter the determinant. So, determinant remain same as determinant 

of A and now we have an upper triangular matrix. So, we can stop the Gaussian elimination 

process. And can also readily compute the determinant of this terminal matrix as 1 × 1 × 2 = 2. 

So, this we will as det(A) = 2.  

The next application is checking whether a set of vectors is linearly independent. Checking 

whether a set of vectors is linearly independent. So, suppose we are given n vectors, v1 to vn. 

𝑣1, …… , 𝑣𝑛 ∈ ℝ𝑚 and we have to determine these vectors are linearly independent or not. What 

we do is we write a matrix 𝐴 = [𝑣1, …… , 𝑣𝑛] ∈ ℝ𝑚×𝑛. 
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Now, we reduced A to reduced row echelon form. It turns out that v1 to vn are linearly 

independent, if and only if all the columns in the reduced row echelon form of A are pivot 

columns. All the columns in RREF of A are pivot columns. Let us consider an example. 

Suppose, we are given three vectors,  

[

0
3
0
4

] , [

4
0
0
2

]  𝑎𝑛𝑑 [

1
1
0
0

]. 

We will form a matrix A with these three vectors as columns, 

𝐴 = [

0 4 1
3 0 1
0 0 0
4 2 0

]. 
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Observe that this A is same as the second third and fourth columns of matrix A that we took an 

example a while ago. So, reduced row echelon form of A as we saw then will be  

𝐴 = [

1 0 0
0 1 0
0 0 1
0 0 0

]. 

We clearly see that all the three columns of A are pivot columns dependent. All the three 

columns are pivot columns. So, the three vectors are linearly independent. So, the three given 

vectors are linearly independent.  
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The third application that we will consider determine the rank of a matrix. It turns out that if 

two matrices are row equivalent, then their ranks are same. Row equivalent matrices have same 

rank. Also, the ranks of reduced row echelon matrices are same as number of non-zero rows.  

Finally, if we are given an m × n matrix, given A that is an m × n matrix, the rank of A is same 

as rank of reduced row echelon form of A. This tells that we can use Gaussian elimination to 

reduce A to a reduced row echelon form and thereby to get the rank of A. Let us consider an 

example. Suppose A is a 4 × 5 matrix which is as follows,  

𝐴 = [

1 1 1 1 1
1 2 1 3 1
0 1 0 2 0

1 0 1 − 1 1

]. 
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It can be seen that the reduced row echelon form of A happens to be  

= [

1 0 1 − 1 1
0 1 0 2 0
0 0 0 0 0
0 0 0 0 0

]. 

So, we see that reduced row echelon form of A has to non-zero rows, so its rank is 2. So, rank 

of A is also 2. The next application that we see is computing the inverse of a matrix.  

We have already seen that determinant of a matrix is non-zero if and only if determinant of its 

row reduced row echelon form is non-zero. This tells that A is invertible if and only if reduced 

row echelon form of A is invertible.  



A is invertible if and only if reduced row echelon form of A is invertible. A reduced row 

echelon matrix is invertible if and only if it is an identity matrix. Moreover, we can adopt the 

following procedure to determine if a matrix A say m × n matrix is invertible or not and if it is 

invertible what is its inverse. So, given A which is m × n, here is the procedure.  
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We first write an augmented matrix, matrix which is (A|Im). Im is m × n identity matrix. Then 

we convert (A|Im) to reduced row echelon form. Suppose, (R|B) is a reduced row echelon matrix 

and is row equivalent to (A|Im). That is suppose the Gaussian elimination of (A|Im) terminates 

at (R|B), then A is invertible if and only if R is identity matrix that is, R is Im. Moreover, A-1 is 

let us understand it via an example. Let us again consider  

𝐴 = [
1 1 1
1 2 1
1 2 3

]. 
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We will first write the augmented matrix (A|I3) which clearly is  

𝐴 = [
1 1 1 1 0 0
1 2 1 0 1 0
1 2 3 0 0 1

]. 

If we apply a sequence of elementary row operations it can be seen that (A|I3) is row equivalent 

to matrix (R|B) that is  

(R|B) =

[
 
 
 
 1 0 0 2 

−1

2
 
−1

2
0 1 0 − 1 1 0

0 0 1 0 
−1

2
 
−1

2 ]
 
 
 
 

. 

Clearly R here is an identity matrix. So, A is invertible and moreover, this sub-matrix B is 

inverse of A.  

𝐴−1 =

[
 
 
 
  2 

−1

2
 
−1

2
−1 1 0

 0 
−1

2
 
−1

2 ]
 
 
 
 

. 
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We now discuss another application of Gaussian elimination, namely, solving systems of 

equations. Solving systems of linear equations. Consider a system of linear equations Ax = b, 

we start with a very important result that we stated a theorem. It says that if (A|B) is row 

equivalent to (A´|b´), then the two systems it is Ax = b and A´x = b´ have identical solutions. 

Recall that the number of solutions of A´x = b´ is governed by the rank of (A´) and (A´|b´).  

In particular, it has no solution if rank(A´) < rank(A´|b´). Unique solution if the rank(A´) = 

rank(A´|b´) = n and it has infinitely many solutions if rank(A´) = rank(A´|b´) < n. Now, suppose 

(A´|b´) in row reduced echelon form. Suppose (A´|b´) is a row reduced echelon matrix. 
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Then, we can obtain the rank(A´)  and the rank(A´|b´) and also the solutions to A´x = b´ merely 

by observation. In particular, if the rank(A´) = rank(A´|b´) = r < n, then we have r pivot columns 

and (n – r) non-pivot columns.  

In this case, the unknowns corresponding to non-pivot columns can be set arbitrarily and are 

called independent unknowns and the unknowns corresponding to the pivot columns can be 

expressed in terms of independent unknowns and are called dependent unknowns.  
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We will illustrate these notions through a few examples. In fact, we will revisit the examples 

seen at the beginning of the lecture. So, let us start with the first example. Here we take  



𝐴 = [
1 1 1
1 2 1
0 1 2

]  𝑎𝑛𝑑 𝑏 = [
3
6
1
]. 

In this case, augmented matrix  

(𝐴|𝑏) = [
1 1 1 3
1 2 3 6
0 1 2 1

].  

If we apply elementary row operations A and A|b are reduced to reduced row echelon matrices.  

A and b are reduced to  

[
1 0 − 1
0 1 2
0 0 0

]  𝑎𝑛𝑑 [
1 0 − 1 0
0 1 2 3

0 0 0 − 2
]. 

Let us call these matrices A´ and A´b´ respectively. Then, since A´ has two non-zero rows it 

can be directly seen that rank(b´) = 2 and following a similar argument, the rank(A´b´) = 3. So, 

A´x = b´ has no solution and so, Ax = b also does not have any solution.  
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Let us look at another example. Now,  

𝐴 = [
1 1 1
1 2 3
1 1 2

]  𝑎𝑛𝑑 𝑏 = [
3
6
4
].  

The augmented matrix now is  



(𝐴|𝑏) = [
1 1 1 3
1 2 3 6
1 1 2 4

].  

Again, if we apply a series of elementary row operations A and A|b reduced to reduced row 

echelon matrices  

[
1 0 0
0 1 0
0 0 1

]  𝑎𝑛𝑑 [
1 0 0 1
0 1 0 1
0 0 0 1

]. 

If I define the first one to be A´ and second one to be A´b´ now, I see that a rank(A´) = 

rank(A´b´). Both have same number of non-zero rows that is 3. 
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And so, Ax = b as a solution has a unique solution and this unique solution can be directly read 

from A´x = b´ which is nothing but x1 =  x2 = x3 = 1 in this case. Let us now see one more 

example. Now  

𝐴 = [
1 1 1
1 2 3
0 1 2

]  𝑎𝑛𝑑 𝑏 = [
3
6
3
].  

The augmented matrix now is  

(𝐴|𝑏) = [
1 1 1 3
1 2 3 6
0 1 2 3

]. 

Now, if we apply a series of elementary row transformation, we get reduced row echelon 

augmented matrix that is RRE, augmented matrix  



[
1 0 − 1 0
0 1 2 3
0 0 0 0

]. 
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As before, if I use A´ to denote this submatrix and A´b´ to denote the whole matrix, then I see 

that the rank(A´) = 2 and rank(A´b´) = 2. These can be seen merely by observing the matrices 

A´ and A´b´. Moreover, notice that the first and second columns of this matrix are pivot 

columns. Hence, x3 is an independent unknown and it can be set arbitrarily. Let x3 = 𝜆, on the 

other hand, x1 and x2 are dependent unknowns.  
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The value of x1 and x2 depend on x3 as follows, 𝑥1 − 𝜆 = 0 and 𝑥2 + 2𝜆 = 3. These two 

equations together give 𝑥1 = 𝜆 and 𝑥2 = 3 − 2𝜆. Clearly in this case, we have infinitely many 

solutions. A general solution will be of the form (𝜆, 3 − 2𝜆, 𝜆), setting different values of 𝜆 we 

obtain different solutions. This brings us to the end of this lecture. Thank you. 

 


