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Hello everyone, welcome to the next module of the course mathematical aspects of biomedical 

electronic system design. This module focuses on linear algebra; this module will comprise of 

three lectures.  
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In today's lecture I will introduce vectors, matrices, vector spaces, et-cetera; so let us begin to this 

lecture.  
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I will start with introducing vectors and matrices. To begin with, we will focus on real valued 

vectors and matrices. So, let us see, let me introduce vectors. Consider m real numbers, say a1 up 

to an; arranged as a one-dimensional arrays. One-dimensional array means we could arrange these 

vectors in two ways; if we arrange them in a row, the resulting object is called row vector. So, this 

is called real value row vector, real value row vector. Similarly, if we arranged these numbers in a 

column; the object is called column vector; so this is a column vector. 
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Now, consider 𝑚 × 𝑛 real numbers say a11……a1n, a21…….a2n and so on am1……amn. So, we have 

𝑚 × 𝑛 real numbers; and if we arrange them in a two-dimensional array, arranged in a two-

dimensional array as follows. So, a11, a12 ……. a1n, am1, am2, amn; then this object is called the 

𝑚 × 𝑛 matrix; so it is called again a real valued, a real valued 𝑚 × 𝑛 matrix. 
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We use Rm to denote the set of all vectors of length m all real valued vectors of length M. And 

similarly, we use similarly we use Rm×n to denote the set of all real valued m × n matrices. If A is 

an m × n matrix, then the one-dimensional vector ai1 .…… ain is called the ith row of A. And the 

column vector a1j … amj is called the jth column of A. 
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Let us now see a few basic operations on matrices. So, we will begin with equality of matrices. So 

two m × n matrices; so, A and B are called equal, if they are equal element wise. So, what I mean 

is that two matrices A, B, both m × n are said to be equal if, Aij = Bij, ∀ij. Here, Aij is the entry in 

the ith row and jth column of A; and similarly Bij is the entry in the ith row and jth column of B. Next 

we will see matrix addition. Given two matrices m × n matrices; their sum is another matrix, 

another m × n matrix defined as follows. For A, B Rm × n, their sum is another matrix C with Cij; 

that is  

𝐶𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗     ∀𝑖𝑗 



Now, we will see multiplication by a scalar; by scalar here we mean real numbers. So, for a matrix 

A that is m × n matrix and a scalar 𝛼, which as I said is a real number; 𝛼A is another m × n matrix. 

So, this also belongs to Rm × n, defined as  

(𝛼𝐴)𝑖𝑗 = 𝛼𝐴𝑖𝑗     ∀𝑖𝑗 

The next thing that we will see are properties of associativity and distributivity. So, what is 

associativity? Associativity properties is that given two scalars 𝛼, 𝛽, and a matrix A,  

(𝛼𝛽)𝐴 = 𝛼(𝛽𝐴) 

So, here we are first multiplying 𝛼 and 𝛽 giving a real number 𝛼𝛽, and then are multiplying with 

a matrix A. 

Whereas, on the right hand side, I am multiplying 𝛼 with a matrix 𝛽𝐴, which itself is a result of 

multiplying 𝛽 with A. Associativity property says that the order of multiplications does not matter. 

Similarly, given a scalar 𝛼 and matrices A and B, 

𝛼𝐴𝐵 = (𝛼𝐴)𝐵 = 𝐴(𝛼𝐵) = (𝐴𝐵)𝛼 

All these properties come under associativity. 
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The next property as I mentioned is distributivity. This property says that given real numbers, 𝛼, 𝛽, 

and matrices A, B; say both Rm × n matrices.  



(𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴 

𝛼(𝐴 + 𝐵) = 𝛼𝐴 + 𝛼𝐵 

these properties together are called distributivity properties. Now, we will look at a few special 

matrices; so a few special matrices. First one is class of square matrices; so what is square matrix? 

A is called a square matrix, if the number of rows of A equals the number of columns in A. So, A 

is called a square matrix if number of rows of A is same as number of columns of A. In other 

words, A that is an m × n matrix is a square, if and only if m = n, is square if m = n. 
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Next we will see identity matrices. So, identity matrix identity matrices are, A which is an m × n 

matrix is called an identity matrix, if all its diagonal terms are 1 and off diagonal terms are 0; if Aij 

= 1, if i = j and 0 otherwise. So, for illustration this matrix is 3 × 3 identity matrix. Next, we will 

look at what we call diagonal matrices. 
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So, a matrix A is called diagonal matrix, if all its off diagonal entries are 0. So, a matrix A which 

is an m × n matrix is called a diagonal matrix diagonal matrix, if Aij = 0, ∀𝑖 ≠ 𝑗. Let us see some 

examples; so, this is a two by two diagonal matrix, let see another example. This is another 

diagonal matrix, these are diagonal matrices. Notice that in diagonal matrices, diagonal entries 

could also be 0.  

Next we will see what is matrix multiplication. Given two matrices A and B, where A is m × n 

matrix and B is n × k matrix; we will define their multiplication. So, for A, B their multiplication 

is another matrix say C, which is an m × k matrix; defined as  

𝐶𝑖𝑗 = ∑ 𝐴𝑖𝑙𝐵𝑙𝑗

𝑛

𝑙=1

 

This is how we obtain the i-jth element of the product matrix. 
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So, from here we see that we cannot multiply arbitrary matrices of arbitrary dimensions; there has 

to be compatibility within their dimensions. For instance, to multiply A and B, the number of 

columns in A must be equal the number of rows of B. So, we how do you denote the multiplication? 

So, we use AB to denote product of A and B. So, as I said earlier AB is defined only if number of 

columns of A equals number of rows of B.  

Next fact is if AB and BA both are defined and have same dimensions; even then they need not be 

equal. If AB and BA are defined and have same dimensions, even then they need not be equal. 

Like multiplication of scalars and matrices, matrix multiplications also follow associativity and 

distributivity properties. Let us see what these properties are. 

(Refer Slide Time: 17:41) 



 

Let us begin with associativity. This says ∀A in Rm × n, and B in n × p, and C in p × q.  

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) 

Similarly, let us write distributivity property. It says that ∀A, B that are m × n and C, D there are 

n × p;  

(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 

𝐴(𝐶 + 𝐷) = 𝐴𝐶 + 𝐴𝐷 

Let us see what happens when we multiply a matrix which is an identity matrix of suitable 

dimension. So, multiplication with identity matrix; it can be easily verified that ∀A that are m × n 

matrices  

𝐼𝑚𝐴 =  𝐴𝐼𝑛  =  𝐴 

So, here Im and In are m × n and n × n identity matrices respectively. Next is a very important 

notion that we will encounter again and again; and this is of transpose. 
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Given a matrix A, which is an m × n matrix; the matrix B is called transpose of A. The matrix B 

which is actually an n × m matrix is called transpose of A, if Bij = Aji, ∀i, j. We denote transpose 

of A B as follows;  

𝐵 = 𝐴𝑇  

this is transpose signal. Superscript is transpose signal; so, let us see an example.  

Let say,  

𝐴 = [
2 3
1 5
4 7

]     𝐵 = [
2 1 4
3 5 7

] 

so, this is a 3 × 2 matrix. Let say B is 2 × 3 matrix with entries are as follows; then clearly B is 

transpose of A. So, actually if we see in when we do transpose the columns of A becomes row of 

A transpose, and rows of A becomes columns of A transpose. So, the columns bracket rows of A 

become rows columns of A transpose. 
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Let here are a few properties of transpose. First property is transpose of transpose is the original 

matrix itself. Second one says that if I have two matrices A and B, if I add them and take transpose; 

that is like first taking transpose and then adding. Third property says that if 𝛼 is a scalar and A is 

a matrix, then (𝛼𝐴)𝑇 = 𝛼𝐴𝑇. Fourth property says that if I have two matrices A and B of suitable 

dimensions, so that I could multiply those; then transpose of product is product of transposes, but 

the product is done in reverse order. 
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So, let us define another notion and that is of symmetric matrices. So, a matrix A is called 

symmetric matrix if it is same as its transpose. A and clearly a symmetric matrix has to be a square 

matrix is called symmetric matrix, if A = AT. Let us see what are anti-symmetric matrices. So, 

again A which is an m × m matrix is called anti-symmetric, if A = -AT; is called anti-symmetric if 

A = -AT.  
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Finally, let us see another very important notion in the context of matrices and that is of inverse of 

a matrix, inverse of a matrix. So, for a matrix again inverse are defined only for square matrices. 

So for a matrix A that is an m × m matrix, the matrix B is called inverse, if  

𝐴𝐵 = 𝐼 = 𝐵𝐴 

B which is again an m × n matrix is called inverse of A if, AB = I. And in this case it is also equal 

to product of B.  

So, if AB = BA = I; I would say that B is inverse of matrix A. Not every matrix possesses an 

inverse; if a matrix has inverse it is called invertible matrix. Sometimes also called non-singular 

matrix; otherwise it is called non-invertible or singular matrix; not every matrix possesses an 

inverse. 

If A has an inverse, A is called invertible or as I said non singular; otherwise A is called non-

invertible or singular, non-invertible or singular. If a matrix A has inverse, the inverse is unique; 



if A has an inverse, the inverse is unique; that is a matrix cannot have two different inverses. So, 

these are the few facts about inverse of matrices. Until now we have focused on real valued 

matrices; almost all the concepts notions that we have seen so far, can also be extended to so called 

complex valued matrices. As the name suggests complex valued matrices are two dimensional 

arrays of complex numbers. 
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Let us see these also briefly complex-valued matrices. So, C is complex number; we use C to 

denote complex number. So, complex-valued matrices are as I said are m × n array, but now of 

complex numbers. Analogous to the notion of transpose in case of complex valued matrices, we 

have notion of conjugates transpose.  

So, given a matrix A, I call another matrix B. So, A is m × n complex valued matrix; I call another 

matrix B, which is n × m conjugate transpose of A, which called conjugate transpose of A, if  

𝐴𝑖𝑗 = 𝐵𝑖𝑗
̅̅ ̅̅  

Conjugate transpose of A is denoted as A*; so, this is the notation that we use for conjugate 

transpose. Analogous to the notion of symmetric matrices in the context of complex valued 

matrices; we have the concept of Hermitian matrices; let us see what these are. 
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Hermitian matrices, so in A square value is a square complex valued matrix, is called Hermitian, 

Hermitian matrix or often called self-adjoint matrix. If  

𝐴∗ = 𝐴𝑇̅̅̅̅ = 𝐴 

Next we will introduce the notion of vector spaces; we define a vector space over the set of real 

numbers, vector space.  

A vector space V over the set of real numbers are is a set V with two operations. We see those 

operations are ‘+’ and ‘.’ ; here ‘+’ is addition of two elements of V, and ‘.’ is multiplication of an 

element of V with an element of R. So, these are two operations such that the following properties 

are satisfied. So, let us see what are the properties that are needed for vector spaces. 
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First property is V is closed with respect to these two operations, namely multiplication and 

addition; closed with respect to ‘+’ and ‘.’. And what does this mean? This means that if I take two 

elements from the set V and I perform addition; I get another element of B. Similarly, if I take an 

element of V and an element of R and multiply the two, again I get an element of V. The second 

property is that there exists an additive identity, 0 in V. There exists an additive identity is 0 bar in 

V, such that, if I add this two any element of V, I will get back the same element. 



Third property; for each element, so this holds for all x in V. In third property is for all x in V; 

there exists another element of V, such that if I add these two elements, I will get the 0 additive 

identity. So, for all x in V, there exists another element denoted as say -x in V, such that 

𝑥 + (−𝑥) = 0 

Fourth property is, if I multiply any vector in V with 1, I will get the same vector. So, for all x in 

V, 1. 𝑥, notice that 1 is the multiplicative identity in R; so, 1. 𝑥 =  𝑥. Fifth property is, what we 

call commutativity. And this says that  

𝑥 +  𝑦 =  𝑦 +  𝑥      ∀𝑥, 𝑦 ∈ 𝑉 

Sixth property is associativity. And this says that,  

𝑥 + (𝑦 +  𝑧) = (𝑥 + 𝑦) + 𝑧 

And  

𝛼(𝛽𝑥) = (𝛼𝛽)𝑥 

and this holds ∀𝑥, 𝑦 ∈ 𝑉, 𝛼, 𝛽 ∈ 𝑅. Seventh property is distributivity. This says that  

𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦 

and  

(𝛼 + 𝛽)𝑥 = 𝛼𝑥 + 𝛽𝑥     ∀𝑥, 𝑦 ∈ 𝑉 𝑎𝑛𝑑 𝛼, 𝛽 ∈ 𝑅 

If there is a set V along with two operations, addition and multiplication; such that all these seven 

properties is satisfied; the state V along with those two operations is called a vector space. 

(Refer Slide Time: 36:13) 



 

In the context of vector space, the elements of R are called scalars. So, here is a remark, rather I 

put a couple of remarks. Elements of R are called scalars; and elements of V are called vectors. 

Just the way we define vector spaces over R, we could similarly define vector spaces over C; that 

a set of complex numbers. And define vector spaces over C; all we have to do is we have to replace 

R with C that in above definition; replace R with C in the above definition. But, we will mostly 

focus on vector spaces over real numbers. Let us see a few examples of vector spaces. 
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The first example is Rm that is set of vectors of length m, set of real valued vectors of length m, 

along with these two operations. This is a vector space over R; recall that this is vector addition; 

and this is multiplication of a vector with a scalar. As we have seen, a while ago, when I introduced 

vectors and matrices, vector with a scalar; so, this is vector space. What is the additive identity 

here? It is 0, 0 vector of length m; this is additive identity. Let us see few more examples of vector 

spaces. The second interesting example this set of all m × n matrices. Here, this ‘+’ is matrix 

addition and this ‘.’ is multiplication of a matrix with a scalar; let us see a few more examples. 

For instance, it is a familiar example. The set of two dimensional geometric vectors, by this I mean 

this plane, this two dimensional plane and all the vectors here, these are all vectors here; it is a 

collection of all such vectors; this is a vector space. Fourth example is let us say a fix a matrix A, 

say m × n matrix real valued. Then take all vectors of length n such that Ax = 0 vector.  

So, this collection V is a vector space. It can be easily shown that this satisfies all the properties 

all the seven properties that we needed above; namely in particular this V is closed with respect to 

multiplication with a scalar and vector addition. Having seen these examples, let us make a few 

observations about the vector spaces; this could also be seen as property of vector spaces. 
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Observations; first observation is, the additive identity is unique, identity in a vector space is 

unique. Informally, I mean that there can be only one 0 vector in the vector in any vector space; 

that is 0 that is element of V is unique. The second property is that for any element of the vector 

space, its additive inverse is unique. So, ∀𝑥 ∈ 𝑉, its additive inverse is unique.  

In other words, if there exist x1 and x2, such that x + x1 = 0 vector; and x + x2 = 0 vector. In that 

case x1 = x2. What is third property? Third observation about vector space is, it says that 0.x = 0 

vector. This 0 is additive identity in R; that is 0 in 0 real number, additive identity in R; whereas, 

this 0 is additive identity. 



The fourth property says that for all x∈V; -x = (-1)x. -1 is the real number -1; this is the unique 

additive inverse. Again, this is additive inverse in V, and -1 we know it is a real number -1. So, 

these were a few properties of vector spaces. 
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Next, we will see another important notion and that is of subspace. What is a subspace? Given a 

vector space say (V,+,.) and S ⊆ V. (S,+,.) is called the subspace of (V,+,.), if this itself is a vector 

space. So, (S,+,.) is called a subspace of (V,+,.); if (S,+,.) is a vector space. That it satisfies all the 

seven properties that were mentioned above is a vector space.  

Here, notice that the addition and multiplication here are same as addition and multiplication in 

the definition of vector space (V,+,.). So, we often simply say that S is a vector space of (V,+,.); 

we simply say that S is a subspace. Because we know that the addition and multiplication here 

would be same as those in the context of the original vector space. 

Let us see an example. So, we have already seen that (Rn,+,.) is a vector space. We also saw that 

V, which is defined as a collection of x ∈ Rn, such that Ax = 0 vector, this is a vector space. Clearly 

V ⊆ Rn; hence V is a subspace of  (Rn, +, .). So, how do I, we identify whether a subset of a vector 

space is a subspace or not? 
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So, here is a claim, an observation. S ⊆ V is a subspace of (V, +, .), if the following three properties 

are satisfied. First is S has to be non-empty obviously; S cannot be an empty set. The second 

property is S is closed under addition; that is ∀x, y ∈ S, x+y ∈ S. And the third property is S is 

closed under scalar multiplication.  

So, what we mean is that ∀x ∈ S and 𝛼 ∈ R; 𝛼x ∈ S. So, we so what I mean that if S ⊆ V, where 

(V, +, .) is a vector space; then S will also be a vector space, in particular, it will be a subspace of 

V, if these three conditions are satisfied. Third condition in particular implies that 0 ∈ 𝑆. If S does 

not contain the additive identity of V, then S cannot be a subspace of V. Let us see a few more 

examples. 
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One trivial example is a set containing just the additive identity of V, this set of the singleton itself 

is a subspace of V. It satisfies all the three conditions that we wrote above. Another example is 

now consider the set of geometric two dimensional geometric vectors; set of all the vectors. Here 

if I restrict to the line passing through origin; let us denote the original one as R2.  

Then if I take a line passing through origin, this line is a subspace of R; a line passing through 

origin is a subspace of R2. Why it is a subspace? See it is non empty, if I take any two vectors on 

this line and I add those, I will get another vector on the line. If I take a vector on this line, and I 



multiply with a scalar; I will still get a vector on the line. So, it meets all the three requirements 

that I mentioned above; so this line is a subspace. 

Now, we will see another example. Say, this line, this does not pass through origin; so, this does 

not contain the additive identity of R2. So, this is not a subspace, let us call this line V; then V is 

not a subspace, because it does not contain the additive identity of R2. Similarly, consider this set 

this subset of R2, let me call this w. w is also not a subspace of R2, because if I take a vector; let 

us say I take this vector and then multiply it with 2; then I will get this vector. So, this scalar 

multiplication of this original vector is not inside w. So, w is not a subspace; let us think of this 

shape. 

Let me call this W, then this W is also not a subspace. What is the reason? The reason is if say I 

take two vectors, say this and this; and I add the each. Then their summation which will be this 

vector; this is not in w. So, it is not closed with respect to vector addition not closed with respect 

to addition. Now, let me define the notion of linear independence of vectors. 
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Linear independence; let us consider a vector space (V, +, .) over R; then a set of vectors v1 …… 

vn, ∈ V are called linearly independent, if 𝛼1𝑣1 + 𝛼2𝑣2 … … … + 𝛼𝑛𝑣𝑛 = 0; only if all the alphas 

are 0. So, this implies that all the alphas are 0. If this happens, we say that the set of vectors v1 to 

vn are linearly independent. 
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Let us see few examples. Consider V=R2; in this space the additive identity is 0, 0 vector. Now, 

consider two vectors 𝑣1 = [
1
0

] , 𝑣2 = [
0
1

]; then for any scalars 𝛼1𝑎𝑛𝑑 𝛼2, 

𝛼1𝑣1 + 𝛼2𝑣2 = [
𝛼1

𝛼2
] = [

0
0

]        𝑖𝑓𝛼1 = 𝛼2 = 0 

So, v1, v2 are linearly independent. Let us consider another example. Again, my V=R2 and now, I 

am taking 𝑣1 = [
1
0

] , 𝑣2 = [
0

−2
]. It can be easily checked that  



2𝑣1 + 𝑣2 = 0 = [
0
0

] 

This means that v1 and v2 are not linearly independent; in fact, they are linearly independent. Let 

us take one more example. And now I take V to be set of all geometric vectors in two dimensions; 

so, this is my V. In this case, again I take let us say three vectors v1, v2, and let say this is v3. v1 

and v2 are not linearly independent, independent; but v1 and v3 are. Next, I will define the notion 

of span of vectors. 
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The span of a set of vectors v1 …… vn in V, is the set of all linear combinations of these vectors. 

In other words, this is the set of all vectors in V that can be expressed as linear combination of v1 

…… vn. In other words, span of v1 …… vn is collection of all the vi ∈ V, such that this V can be 

written as  

𝑉 = ∑ 𝛼𝑖𝑣𝑖        𝑓𝑜𝑟

𝑛

𝑖=1

𝛼1, … … , 𝛼𝑛 ∈ 𝑅 

Let us see examples. 
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Let us take V=ℝ2; and I take just one vector that is [
1
0

], we call it 𝑣1 = [
1
0

]. What is span of 𝑣1?  

𝑆𝑝𝑎𝑛 𝑜𝑓 {𝑣𝑛} =  {𝛼 [
1
0

] ∶  𝛼 ∈ ℝ} = {[
𝛼
0

] ∶  𝛼 ∈ ℝ} 

Let me take another vector 𝑣2 = [
0
2

]. Now, what is span of 𝑣1, 𝑣2?  

𝑆𝑝𝑎𝑛 𝑜𝑓 {𝑣1, 𝑣2} =  {𝛼1 [
1
0

] + 𝛼2 [
0
2

] ∶  𝛼1, 𝛼2 ∈ ℝ} = {[
𝛼1

2𝛼2
] ∶  𝛼1, 𝛼2 ∈ ℝ} = ℝ2 

It can be seen that this is whole ℝ2; so, span of 𝑣1 𝑎𝑛𝑑 𝑣2 which whole of ℝ2. By the way, if I 

define 𝑣3 = [
3
0

]; this can easily be checked that span of 𝑣1, 𝑣3 is same as span of 𝑣1. 𝑣1, 𝑣3 is same 

as span of 𝑣1, that is still it is still  

𝑆𝑝𝑎𝑛 𝑜𝑓 {𝑣1, 𝑣3} = {[
𝛼
0

] ∶  𝛼 ∈ ℝ} 

We end this lecture with a discussion on the notion of bases. 
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Now, we look at basis; plural is bases, plural is bases. A set of vectors v1 …… vn in a vector space 

V, is called a basis of V, if the following two conditions are satisfied, one is these vectors are 

linearly independent; and second is, they span the entire space. So,  

𝑆𝑝𝑎𝑛 𝑜𝑓 {𝑣1 … … … … 𝑣𝑛} = 𝑉 
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Let us see few examples. Consider V=ℝ3; then if I consider vectors 



𝑣1 = [
1
0
0

] , 𝑣2 = [
0
1
0

] 𝑎𝑛𝑑 𝑣3 = [
0
0
1

] 

Then we can see that,  

𝛼1𝑣1 + 𝛼2𝑣2 + 𝛼3𝑣3 = 0     𝑜𝑛𝑙𝑦 𝑖𝑓 𝛼1 = 𝛼2 = 𝛼3 = 0  

This means that  𝑣1, 𝑣2, 𝑣3 are linearly independent. Moreover, ∀𝑥 ∈ ℝ3, I can write x as  

𝑥 = 𝑥1𝑣1 + 𝑥2𝑣2 + 𝑥3𝑣3 

with 𝑥1, 𝑥2, 𝑥3 are three numbers; these three components of x. That means ∀𝑥 ∈ ℝ3 can be 

expressed as a linear combination of 𝑣1, 𝑣2, 𝑣3. In other words, 𝑣1, 𝑣2, 𝑣3 span the whole of ℝ3. 

So, {𝑣1, 𝑣2, 𝑣3}  is a basis of ℝ3. We will now see a few properties of basis. 
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So, observations about basis. First property is bases are not unique. For example, consider V=ℝ3; 

we saw a basis just above that was  

{[
1
0
0

] , [
0
1
0

] , [
0
0
1

]} 

This is a basis; but if I write say  

{[
5
0
0

] , [
0

50
0

] , [
0
0

10
]} 

This is also a basis; so, bases are not unique. Second property is that if 𝐵 = {𝑏1 … … … … 𝑏𝑛} is a 

basis of the vector space V; then every vector in V can be written as unique linear combination of 

𝑏1 … … … … 𝑏𝑛. Every vector v ∈ V can be expressed as unique linear combination, combination 

of 𝑏1 … … … … 𝑏𝑛. What I mean is that if say  

𝑉 = ∑ 𝛼𝑖𝑏𝑖

𝑛

𝑖=1

    𝑎𝑛𝑑  𝑉 = ∑ 𝛼𝑖
′𝑏𝑖

𝑛

𝑖=1

 

This can happen only if 𝛼𝑖 = 𝛼𝑖
′ ∀𝑖. 

So, this was second property. The third observation is that, if 𝑤1 … … … … 𝑤𝑚; say these are m 

vectors belonging to V are linearly independent. Then there exists a basis of V that contains these 

vectors. That means, if 𝑤1 … … … … 𝑤𝑚 are linearly independent, then there exists a basis B, 𝐵 =



{𝑣1 … … … … 𝑣𝑚} of V, such that the collection {𝑤1 … … … … 𝑤𝑚} ⊂ {𝑣1 … … … … 𝑣𝑚}. Let see what 

I mean by an example. 
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Consider V=ℝ3. Notice that  

𝑤1 = [
2
0
1

] , 𝑤2 = [
2
2
0

] 

These are linearly independent, then there exists a basis that contains these two; so  

{[
2
0
1

] , [
2
2
0

] , [
1
0
0

]} 

is a basis of ℝ3. 

Let us look at the fourth property that says that if V is a vector space and 𝑣1, 𝑣2 are two of its basis; 

then the number of vectors in 𝑣1 will be same as number of vectors in 𝑣2. So, if V is a vector space 

and B1, B2 are two base bases of V, then number of vectors in 𝑣1 often called cardinality of 𝑣1 is 

same as cardinality of 𝑣2; that is number of vectors in 𝑣2. Let us see one more property. 
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This is more like a definition. It says that if bases of a vector space V have finitely many vectors. 

That is if the cardinality of basis is finite, that V is called a finite dimensional vector space. If basis 

of a vector space V have finitely many vectors finitely many vectors; then V is called a finite 

dimensional vector space, called a finite dimensional vector space. In this case, the number of 

vectors in any basis is called dimension of V. In this case, the number of vectors in any basis of V 

is called dimension of V. It is also denoted as dimension v; this is notation. Let us see an example. 
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For example, if V=ℝ3; then we know that one of its basis is 



{[
1
0
0

] , [
0
1
0

] , [
0
0
1

]} 

So, dim(ℝ3) = 3; because this bases has three vectors. Similarly, dim(ℝ𝑚) = 𝑚. Let us see one 

final definition. If the number of vectors in a basis of a vector space V infinite; then V is called 

infinite dimensional vector space. If the number of vectors in a basis of a vector space V is infinite; 

then V is called and infinite dimensional vector space. So, these were a few properties of bases; 

and with this we conclude this lecture. Thank you. 

 


