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Hello, everyone, welcome to the course mathematical aspects of biomedical electronic systems 

design. This is a TA session and the topic that we are going to focus today is percolation theory 

and its application in biological tissues. Before we begin with this topic, this is in continuation 

with the application and how disorder exists in biological tissues, which we had covered in the 

previous TA session.  

So, before we plunge into this particular aspect of charge transport in biological tissues, let us first 

have a quick recap of the disorder present in the biological tissues. And then we will move on to 

this new topic. For any kind of queries feel, please feel free to put your questions, or queries in the 

comment section.  
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So, what is the meaning of disorder? We are talked about disordered systems, we first reasoned 

that what exactly means disorder, the most simple answer could be anything not in order. And then 

we try to motivate ourselves, that why study disorder in biological system, what is the reason, what 

is the importance of studying disorder in biological system? We study physics to understand our 

daily routine, that we do cycling, walking, everything is related to physics.  

So in a similar way, why do we want to study so as biomedical engineers, or someone who is 

interested in the field of bioengineering, why disorder is important, why studying disorder is 

important? So, one of the most common reason, that we give is that cancer, a very widespread 

disease, and it is certainly a cause of large number of deaths in the world is a cellular level disorder. 

We will talk about it in some later a TA sessions. But, this itself is big motivation, to understand 

what exactly is disorder and why to study disorder.  
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Studying disorder in biology was, was a little big step. So, we went step by step by taking examples 

of existing systems, which have been completely established as far as their disorder is concerned. 

So, we began with first example, which was disordered semiconductors, disordered 

semiconductors have been used in applications such as flexible, flexible displays, which you may 

have seen in recent in the recent media.  

And what is the difference and we talked about what is the difference between disordered 

semiconductors, we took example of amorphous silicon and we tried to reason, that how 

amorphous silicon, which is mentioned here is different than single crystal, or periodic silicon, the 

reason that, there are 3 different kinds of structurally different kinds of silicon available, first a 

single crystal which is locally as well as globally, a globally ordered. Whereas, in the case of 

polycrystalline, there are local patches, which are ordered.  

But overall, if you see the crystal, if you take a wafer of poly silicon, then and if you do studies 

like X ray diffraction, we will find that the structure is not continuously ordered, but there are some 

patches, which presents ordered structure. And then there are some patches, which does not present 

ordered structure. Overall, it is not an ordered structure, but locally it is ordered. Whereas, in the 

case of amorphous, which is completely disordered system, even local ordering is absent.  
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Then we try to understand that what kind of disordered semiconductors are, are available, inorganic 

like amorphous silicon, and poly silicon and then organic conducting polymers such as 

PEDOT:PSS. So, when I was referring to flexible ovulates flexible displays, or even flexible 

devices, if you happen to design some biomedical devices, it is good to have flexibility. Because 

our skin is not planar and whatever sensor we fabricate it has to be conformal.  

So, another reason why we included disordered semiconductors in this particular session. And then 

we presented a comparative analysis of how these three different kinds of structurally different 

kinds of silicon fair in terms of their subsystems, which is short range order, which is present in 

all of them, defects of system, it is present it is present in again all of them, morphologically single 

crystal silicon stands out compared to poly crystalline and amorphous silicon. And then medium 

range order, medium range order as we discussed, which is, which is even not even locally 

disordered is a present only in amorphous silicon.  
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Now, these kinds of systems also translate into different kinds of band structure arrangement, this 

is what we studied last time, we study that how in case of single crystal silicon the band diagrams, 

which is valence band and conduction band are clearly separated and in between there is something 

called as forbidden gap, there are no energy levels which are allowed, there are no states which are 

available, for any charge carrier to, to occupy this particular location. Whereas, in the case of 

disordered semiconductor, we took an example of amorphous silicon.  

And what we found? We found that there are, there are localized states, which extend into the 

forbidden gap when compared to the single crystal silicon. And what are these localized states? 

These localized states are non-continuous patches with allowed levels of energy within the 

forbidden zone, you can imagine it in this way, then we saw that if it is E versus X, within that, 

you can have multiple energy levels within the forbidden zone and these are all allowed state and 

they are not connected. And that is why they are called localized states.  

Again, we just we are just scraping through the surface, there is a lot more that goes into 

understanding these localized states, the foundations are the foundations lie in the in the field of 

quantum mechanics, but just to appreciate the structural difference between single crystal silicon 

and amorphous silicon and how it affects the band structure arrangement, which will eventually 

affect the transport properties, we are trying to understand at first order. 
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Then we try to understand, what are these localized states in terms of a clear band diagram, which 

we can, which we can assume for disordered semiconductor, which is amorphous silicon that is 

the case example here. So, what we found? We found that, like we have bands, valence bands and 

conduction band, in case of single crystal silicon, in case of amorphous silicon, we have something 

called as mobility edge.  

The mobility edge is something, where after if the electron is transported here, then the conduction 

will be seamless. But somewhere here, where the states are localized, the conduction will be unlike 

the way when it is after the mobility edge, which means, here the conduction will be the way 

electrons transport will be different, the way they transport when they cross this mobility edge. 
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Then, we also looked at another example of polymer composite, we had discussed that polymer 

composite resemble to some extent the structure of tissues and can be modeled and therefore, are 

useful in understanding the structure of biological tissues, by the means that they capture the 

complexity and the associated randomness. We took three examples here. The first example was 

there is this polymer composite, which contains polymer and nano fibers as filler material.  

So, these nano fibers as you see are filler materials, which are electrically conducting, which are 

carbon nano tubes here. And in the second structure, we introduced small silicon nano particles, 

which are insulating, and in the third figure, we found that, they have introduced larger silica 

particles.  

And why did we discuss all these things? We were discussing, that how structure can affect the 

physical property, what is the structure property co relationship as far as polymer composite is 

concerned. Similar things, similar concepts can also be applied to biological tissues and how the 

structure property co relationship exists, there is something we are going to see today.  
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We then also try to understand, then if given a polymer composite, which has conducting islands 

in patches, which are connected, loosely connected, when I say loosely connected it means, there 

is no, there is no continuation continuous path between these two, this part does not exist. But there 

are some fine conducting islands, which are present in between these two conducting islands, 

through which the conduction happens. And how the conduction happens is something we are 

going to understand today.  

Then, we try to then in the previous session, we try to understand that how the equations of 

conduction work as far as such a disordered conducting polymer system is concerned, we talked 

about an exponent, which is dependent on temperature and then we found how this particular 

conductivity, which is again temperature dependent can be expressed in terms of exponential of 

this particular function.  

Whereas, this energy, which is required for the charge carriers to transport from one conducting 

island to another conducting Island is again dependent on temperature and is also a function of this 

exponent. Please keep this picture in mind, because in next few minutes, we are going to delve in 

more detail, keeping in mind this particular picture. 
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Then, we moved on to an example of explaining disorder in biological system, we will took 

example of cell migration, why cell migration, we tried to reason that cell migration is a very 

common phenomenon, which is observed in processes like wound healing, tumorigenesis, 

tumorigenesis and embryogenesis.  

So, these are the three main processes, where cell migration is commonly observed. And then we 

saw this clip, wherein we could see that there is structural variation, that is happening across the 

cells and we found that there is no specific order, or there is no specific direction in which these 

cells are moving, or these cells are changing the shape in order to migrate from point A to point 

B.  
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Then, in the next part, we try to understand that what really governs this particular cell migration, 

and how can we characterize the structure of cells and associated disorder. For that, we also looked 

into a vector plot, which gave us further detail about the extent of disorder in the cell migration, 

where we could see that the vector fields associated with the migration, or the movement of cells 

in different direction gave us a very clear idea, that there is no specific direction in which the cells 

are migrating rather, it is very disoriented.  

And how we can understand the structural property? We can understand the structural property, 

by using this equation structure factor. Structure factor is generally used for understanding crystal 

structure by the means of techniques like X-ray diffraction and neutron scattering. Though in this 

particular study, it was done by image analysis, it can also be done by image analysis. And what 

we try to reason is how these cells when they migrate, have both spatial as well as temporal 

variation.  

Now, what is something that can correlate both spatial and temporal variation, this is Fourier 

transform. So, we did a Fourier analysis, we tried to understand that, how it can be explained by 

combining these two aspects. And that is why this particular structure factor contains both spatial 

and temporal terms. And these two parts of this equation, the first part contains Rayleigh scattering 

term, which is associated with random and uncorrelated scattering.  



And then the second part is associated with Brillouin scattering term, which is periodic 

uncorrelated scattering. We do not have to go into the details, this is just to give you a glimpse, 

that how one can understand, or appreciate the extent of disorder in different kinds of system and 

this is where we ended.  
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So, let us now understand what exactly percolation means, what is percolation theory and finally, 

we will try to look for some examples in both existing and established system as well as biological 

systems. So, let us begin with understanding percolation theory.  
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So, one very interesting way of understanding percolation theory is to do a wire mesh experiment. 

So, what you do, you take different strains of wires, and then you solder them, or you connect them 

by some other means, and then you have a common end at each side and then you apply potential. 

Now, what you do? You measure, what is the voltage drop and hence, eventually the resistance. 

So, you can measure the resistance of this wire mesh. So, let us call these junctions as nodes. So, 

I will name them as node 1, node 2, node 3, node 4. And let us say there are n junctions. So, this 

will be node n. And it is a matrix. So, there will be a component ij. So, it can be termed as node 1, 

1, node 1, 2, node 1, 3, node 1, 4 and node Nij, where I corresponds to the row and j corresponds 

to the column.  

Now, you will measure that resistor, resistance for this entire mesh circuit. Now, what you do, you 

remove selectively any node that you feel like it is a random phenomenon. Because if you let us 

say have 137 by 137 matrix, which was the case in this particular example, when the authors did 

the experiment, it is difficult to select that why particular node will be removed.  

So, you associate some randomness to it, which we will discuss now, and then we remove a 

particular node. So, let us say I remove node, node 1, 2, then I removed node 1, 4, after removing 

node 1, 2, I will measure the resistance. So, there will be a resistance after node 1, 2, is removed 

and then there will be a resistance after node 1, 2, and 1, 4 is removed. And then you plot resistance 

versus such node removal instances and what you will get is a graph looking something like this.  

So, this is normalized conductance. So, when I say normalized conductance, it is the conductance 

at that instance of time divided by the conductance at t = 0, t = 0 means, the instance where this 

experiment was started. And t = t, is the time when we are, when we are looking at the conductance 

such, at each instance of the X axis, this is X, this is Y. 

So, what do we see here, we see that as we remove the number of nodes, so this resembles how 

many such fractions of nodes of the total nodes? So, let us say if there are 200 nodes. So, point one 

would mean 10 percent of these many nodes, 10 percent of 200 nodes are removed at this particular 

point and then they are measuring the resistance.  

So, something here at 10 percent, then if I look out for 20 percent, it will be somewhere here and 

then 30 percent, it will be somewhere here, 20 percent is here, 30 percent is there. And finally, 



when I go to around 40 percent, this is the most interesting aspect. Finally, when I go to almost 50 

percent, reduction in the overall number of nodes, the normalized conductivity almost drops to 0.  
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So, there are two observations here one, there is a linear decrease in resistance. And second, more 

important observation is after let us say XC, or the fraction of nodes, which are removed greater 

than 0.4, my sigma by sigma naught is tending to 0. Let us discuss this observation in sequence. 

So, if it is linear reduction, how is it possible? 

So, let us look at this particular diagram, what are we doing, we are breaking some electrical 

junctions, which are contributing flow of current from this point to this point. And this is just to 

show the flow of current, it does not necessarily go like this, it will definitely go through this and 

the shortest, shortest resistance path, which all of you would know, but just to illustrate the point.  

So, as, as soon as I start removing each node from here, the number of junctions, which are 

contributing to the conduction are reducing, which means they are increasing the overall resistance 

of the circuit. Why, because the overall path length, which now the current has to take is increasing.  

For example, if the current was flowing like this and if I broke this node in between, it is possible, 

as I discussed, it is a random experiment. I am removing any node at random, if I have removed 

this, then the current has to go from here to here. And then if I have removed this junction here, 

then it will have to find another route, which is from here to here.  



So, what is the overall length, if you check here and the overall length if you compare. Let us say 

the length at this particular point was l1, and at this particular point is l2, considering the, 

considering the radius does not change, then by 𝑅 = 𝜌
𝑙

𝐴
, if length is increasing the overall 

resistance will also increase. So, now we have understood the linear increase in the resistance as a 

function of removal of nodes or conducting nodes in this particular section.  
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Now, what happens when a particular fraction percentage is reached, I am referring to the point 

number two, wherein after XC crosses 0.4, there is there the resistance sorry the normalize 

conductivity comes back to 0, or approaches 0, they have not zoomed in this particular graph 

otherwise, you would see that how it is approaching 0 very small values of conductance 

conductivity.  

Now, why is that happening? So, let us understand this fact and this is these forms the basis of 

percolation theory. So, I am removing node after node from here, from here, from here, from here, 

from here, from here.  

Now, if I keep doing and repeating this process, I will be left at a particular point, where there is 

no single line, which can continuously connect, if I call this point A and this point B, there would 

not be any single line, which can continuously form a network of such nodes from point A to point 

B. And at this point, and remember at this particular point, the conductivity drops to 0. And this 

particular point where conductivity drops to 0 is something called as percolation threshold.  



So, what we are trying to say that, if there are if there are nodes in the network and the conduction 

is happening through the connected nodes and if we keep tripping the nodes one after the other, 

we will reach a point, we will reach a point and that point which is termed as percolation threshold 

after which there would not be any path, there would not be any continuous path, which can 

provide conduction from point A to point B for the current to pass through.  

So, let us understand this briefly, I am not going into the detail in terms of probability, why 

probability, because it is more of a random experiment, you cannot, you cannot say that in a 

structure in a real, in a real world in a practical world, you cannot really say that, when you are 

making such, when you are making such structure, which has, which has nodes, interconnected 

nodes which contribute to the conduction will snap off, or will not be connected at this particular 

point. And that is why you need to associate that probability to each of such nodes.  
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So, how we can do that, so let us assume that probably, that there are N number of nodes. So, we 

will see that there are N number of nodes, the same diagram I am drawing just for the sake of 

repetition and familiarity. And let us say that there is a probability p, probability p, which is 

associated with, how much is the probability, this is the probability of occupying each of occupying 

one node occupying such nodes.  

So, if there are N such nodes and in the probability for one was this for, one such node is this, then 

the overall probability for N such nodes, which are occupied would be pN, on the other side, there 



will be nodes which are not, which are not connected, which are not occupied. So, what will be 

the probability for that? It will be (1-p)N. So, now we have with two probabilities (1-p)N, and pN 

to N. 
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And let us understand this particular in terms of the percolation threshold. Now, when this N, 

reaches the value of percolation threshold denoted by PC here, the conduction from point A to point 

B happens. So, this is a an example of a maze, which is generally used in different papers, or 

research articles to emphasize the percolator aspect of any kind of system.  

Similar is the case used here, that when the percolation, the, the fraction, or the number of nodes, 

if we continue with the same terminology, the number of nodes, if they are less than the percolation 

threshold number, then there would not be a completely connected path. Whereas, if the number 

of nodes interconnected nodes are larger than the percolation threshold, then the percolation, or 

transport would happen from point A to point B.  

So, this is what we were discussing, that each side is associated with the probability p let N sites 

such in a square lattice. So, one more point that I want to emphasize here is, we are all discussing 

the first order problem, that is why we are taking the simplest case, which is square lattice. In real 

life, there may be honeycomb lattice, which will look something like this and these lattices will be 

interconnected.  



So, these hexagons when interconnected will form honeycomb lattice and then there will be 

triangular lattice is also, where will form structures, where the unit, where the unit cell of that 

particular sector will be a triangle for that, these values would definitely change and have to be 

calculated.  
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But just to begin with, we are going for square lattice. For more references into triangular and 

hexagonal lattice, you can please refer to this book it is quite rigor, rigorously explained all these 

processes and how you can associate probabilities for each such type of lattice, whether it is square, 

honeycomb, or triangular.  



Now, when we talk in terms of biological tissues, or before that let us talk about the polymer 

composites that we had discussed, we talked about conductive, we talked about a cuboid, which 

was the polymer and then there were carbon nano tubes filled in this, in this particular case, this 

was the filler material, the carbon nano tube, the conducting filler material, this was the conducting 

part.  

Now, why I am discussing this, I am trying to draw parallel between the percolation that we just 

studied and this polymer composites. How we can draw parallels? We can consider that in a matrix, 

in a polymer matrix which is insulating we have induced some carbonaceous elements, in this case, 

carbon nano tubes, which are electrically conducting, and till a particular fraction is reached, which 

is PC.  

So, let us say I am taking 1 gram of polymer, and I am putting 0.01 gram of CNT. And if this 

particular volume fraction corresponds to less something which is less than PC, then in this 

particular polymer composite, if I apply, if I apply current, there would not be a continuous path, 

I would not be reading any potential at a voltmeter, if I put here.  

So, just to make it more clear, if this is a polymer composite, and I am applying a potential here, 

and I am reading, what is the current here, if I go for this particular part, where P < PC, which 

means the number of carbon nano tubes, which are mixed in this particular composite are less than 

PC, then I would not be able to form any single conductive path, which can complete the circuit.  

Whereas, if I increase, let us say, this is just an example, these are not some real values, let us say 

increase to 0.04, for example, so I increase it by four times, and for four times let us say, let us 

suppose, we know that for four times this particular value will cross PC. So, we have a condition 

of P greater than PC, in this particular case, what we will find, there is a continuous path and the 

charge particles are able to cross from point A here to point B, why, because now there is a 

continuous percolative path between point A to point B.  

So, this is a kind of formal definition, which has been described in this particular book, each side 

of a very large lattice in terms of lattice, it means it is a kind of solid, even this can be considered 

as a description of lattice, or occupied randomly with probability p, independent of its neighbors. 

Percolation theory deals with us the clusters, thus formed in other words with the group of 

neighboring occupied sites.  



So, here, if you would have paid attention to the previous, previous slide, you would have 

appreciated that how adjacent nodes, how adjacent nodes are very important, because if I have 

short this particular adjacent node, then there would not be any continuity between this node and 

this node.  

So, this adjacent, which is also called as nearest, nearest neighbor node. So, this node which is also 

called as nearest neighbor node is very important in, in percolative transport. So, this particular 

node means, you share an edge, if you are sharing a node with this particular cell, it does not mean 

that it is nearest neighbor. I will draw that again here.  

So, these two can be considered as adjacent nodes, whereas the adjacent, or nearest neighboring 

nodes, whereas these two are not sharing an edge, they are sharing a node and that is why these 

two, if I were to name it, one S1, S2 and S , S1, and S2 are nearest neighbors, whereas S1 and S3 are 

not nearest neighbors. So, this is what was about particulative transport.  

Now, we will try to understand, we have seen how percolation happens, but at the level of 

conducting islands, which in this particular case was carbon nano tube to carbon nano tube, how 

transport happens, that we will now try to understand.  
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So, the process by which such kind of particulate of transport occurs is called hopping. Hopping 

by literally since it means jumping from one point to another point. So, let us say there is a point 

A and there is a point B, you hop means you jump from point A to point B. In the literal sense, it 

means that and even if we consider in terms of charged particles, let us say we consider electron, 

the same can be associated with holes. The hole jumps from one point A in space, in space.  

So, this is space X, so electrons will jump from one point A to point B. So, what are the things 

which are and this is how the percolative transport is found. So, what are the things required, for 

the electron to achieve these jumps successfully, one as we would be able to appreciate is the 



distance. So, let us say this distance is XAB, which is called the hopping length. And second, how 

much energy has been given to this electron to jump from point A to point B. 

So, this energy is mostly either thermal, or it is electrical, by electrical I mean it is electric field. 

And now if you are, if you are able to recall the equation, wherein there was a temperature 

component for the polymer composite, we had written that it is exponentially dependent on 

(
𝑊𝛾

𝑘𝑏𝑇
)
𝛾

 

and there was a temperature dependence.  

And this temperature dependence stems from the fact that, for an electron to hop from point A to 

point B, one of the factors which is required is energy and that one of the energy forms, which can 

do, or which can help electron achieve that hop is thermal energy and that is why there is a 

temperature dependence.  

So, what do we conclude from this particular point, we conclude that temperature dependent, 

temperature dependent transport, when I say transport I am talking about electrical transport unless 

specified. Temperature dependent transport is a signature, is a signature of disordered system, as 

a disordered system, why, because if you are supplying some extra thermal energy to the system, 

you will find that the conductivity will increase.  

Now, what so this is one way, this is the second way. Now, let us go to first way, what does it 

mean by hopping length? Now, going back to the previous slide, where we had brought in that 

picture of polymer composite, where there was a polymer matrix and then there were carbon nano 

tubes filled and there were two cases that we discussed one was P < PC and second was P > PC.  

Now, let us try to understand these two cases in terms of hopping length. Let us say in case of P < 

PC, I will just try to draw how it will look from a top view. So, I am trying top view here. So, this 

is the case for P < PC. So, I put it inside a square box so that it does not confuse. So, these are all 

carbon nano tubes and this is the case for P < PC, which means the conduction is not happening, 

one of the reasons why conduction would not happen and the fact that we said that it is less than 

volume fraction, what does it mean; the length.  



So, this is a carbon nano tube, this is electrically conducting, this is another carbon nano tube, 

which is electrically conducting, to make a jump from one conducting island to another conducting 

island, electron not only needs energy, which we discuss, it also needs a particular length, which 

can make that jump feasible at this, this, this length, or the hopping length that we discussed cannot 

just be any value and that is dependent on different factors such as, what is the temperature, how 

is the fraction of carbon nano tubes arranged in a particular system. 

And within the carbon nano tubes, how fast is the conduction possible, considering all these facts, 

there is a limitation to which electrons can make a jump from conducting island 1 to conducting 

island 2, and this limitation can directly be correlated with the volume fraction concept that we 

studied in previous slide, which says that if a particular volume fraction is not reached, if the 

number of conducting islands are not at a particular rate percentage in a matrix, then this 

conduction will not happen.  

(Refer Slide Time: 40:21)  

 

Now, similarly, let us try to take the case, where this volume fraction is enough to form a 

percolative path. So, I am just drawing a denser carbon nano tube system in the same polymer 

composite. And what here happens is? If previously, the, the mean length for the electron to hope 

was l1, and here the mean length is l2 here l2 < l1 and l2 should be less than or equal to the hopping 

length, which is the length required for the electron to make that hop to make that jump from point 

1 to point 2.  



So, we saw how these concepts of polymer composites their structure, their electrical transport, 

and how the transport happens, how percolation theory comes into the play, and how that 

percolation theory is connected to the fundamentals of charge transport in such systems, which is 

percolative, all this overall picture is now clear to you, this is what we do.  

Now, just to give you a little more glimpse, we would not go into the detail, we will talk about two 

different types of hoppings, which can happen in a system. This will again make use of the previous 

slides discussion that we had, where I asked you to pay some more attention on the concept of 

nearest neighbor.  
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So, the first hopping itself, first type of hopping is called nearest neighbor hopping. So, the name 

itself suggests again we go back to that picture our same old picture, this is a conducting part, this 

is another conducting part, and this is a nearest neighbor. So, this is the point where electron is 

located, the electron will make a jump from point A to point B, this is a, this is, an idea system 

does not exist.  

So, if we look in terms of polymer system, this is a carbon nano tube an electron is making a jump 

from point A to point B. This is the nearest neighbor, this is A, this is B, the highlight of nearest 

neighbor, if I were to draw it in terms of energy. So, let us say this is E1 and this is E2, this is E1 

and E2, the electron let us say is here and this separation, let us say is 𝐸∆.  



So, when you increase the temperature sufficiently, if you remember that 𝜎E equation, that we had 

discussed for disordered composite, this E corresponds to the energy, which is required for that 

electron to make this jump. So, if you supply enough temperature here, which is thermal energy, 

it can make this jump from here to here, such a jump would be called nearest neighbor hopping.  
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Now, let us look at the second type of hopping. In this type of hopping, this type of hopping 

generally observed when the temperatures are not elevated, you do not have that high amount of 

thermal energy to provide enough, enough input to the electron to make that jump. So, if I draw 

the same diagram, if this was, if this was the energy E2 and this was energy E1, then the jump made 

from here to here is nearest neighbor.  

And let us say there is an intermediate energy level. Let us say this is E3, which is available because 

it is a disordered systems, in a single space energy domains can lie E1 within the forbidden zone. 

So, let us say I have energy level E3, and my electron is cell here, this jumper is not possible 

because I do not have this temperature with me. In that case what would happen is? This is a 

probabilistic event, which means there is a probability associated with this particular electron 

making a jump from here to here.  

Now, why this jump looks more feasible, there is one important reason here which can easily be 

seen, just by the look of it, that the overall energy required for the electron to make this jump. Let 



us say this is 𝐸∆2 and this energy is 𝐸∆1. So, 𝐸∆1 > 𝐸∆2. So, even if though, even if they, they are 

spatially, that they are spatially located at different instances electron.  

Because of its low energy state for this particular level, it can jump, I am saying it can jump, 

because again there is a probability associated with that, it can jump from this state to this state, 

such a jump when made is called variable range hopping, or VRH. And these two hoping type are 

the hallmark of any kind of disordered semiconductor, or disk, or polymer composite, or any kind 

of disordered system when you consider its transport behavior.  

So, whenever one has to study a disordered system and one has to characterize the physical 

properties, such as I-V, or thermoelectric behavior. Because as we discussed such disordered 

system were very temperature sensitive, for these two and many other types of studies, variable 

range hopping and nearest neighbor hopping is something that one should look for.  
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So, having understood and study some aspects of percolation theory and how the charge transfers 

from point A to point B, what are the different hopping mechanisms that using which the charge 

can hop from point A to point B. Let us now look at some examples, which have been cited in the 

literature.  

So, this is one example and I chose this example, because it resonates with the previous discussion 

on polymer composites, why I keep choosing polymer composites will be clear very soon to you 

in the next slide. So, in this polymer composite, this is a conducting part, it is a carbon nanofiber, 

I am not going to the detail of carbon nanofiber, the difference between carbon nano tubes and 

carbon nanofiber is that carbon nano tubes are hollow carbon nanofiber is a proper fiber, which is 

solid all throughout.  

So, this is a carbon nano tube and this is a carbon nanofiber. So, what they did? They, they took a 

polymer and then they kept filling this carbon nanofiber and then they measured the resistivity of 

the composite at different filling fractions. This filling fraction is the same volume fraction, or 

packing fraction there are different names to it. So, please do not get confused. So, they kept filling 

at different concentrations.  

So, this is plotted for at X axis and the resistivity is plotted on Y, on Y axis. So, when they kept 

filling and increasing the concentration of this carbon nanofiber in this polymer composite, what 

they found was, the resistivity which was around 1016 ohms centimeter at P = 0%, there was no 

carbon fiber, it reached to 102 ohms per centimeter, when P was increased to 12 %, which is volume 



by volume. If you see this value 1016 to 102 ohms centimeter, there is a staggering change of 1014 

times between the conductivity values.  

So, just by increase of conductive fraction in the polymer composites, you can achieve very high 

resistivity, very from we can convert a material with very high resistivity to a material with very 

high conductivity. Now, such systems, because they are primarily composed of polymer can be 

used for many applications, such as flexible devices, stretchable devices, and as we have discussed 

such flexible and stretchable devices are very useful in designing biomedical sensors. 

So, now all these things, if you see in a single picture, percolation begin with disordered, then 

percolation, then we are talking about hopping, if you see this in a single picture, we find that it is 

very much related to biology and biomedical systems alike. The relevance in biologic will be 

appreciating more when you go to the next example.  
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So, next example is chosen again from the literature. And here we have taken the example, where 

collagen, which is the most abundant type of protein found in animals has been modified by 

introducing metal elements by decorating it or encapsulating it with metal elements and then they 

have studied its electrical properties.  

First, we will try to see what exactly has been reported and then we will try to understand and 

appreciate this work, how is this important. This slide will also found the culmination of our 



discussion on disordered systems and percolation theory. So, try to pay a little more attention to 

this.  

So, in this particular case, they have used gold collagen nanofibers and what they found was, when 

they decorated this collagen, a you can see this collage nanofibers with gold nano particles, these 

are gold nano particles, they started conducting, this became this overall system became 

electrically conducting. And what type of electrical conduction was found here? So, if you see the 

structure more carefully, if you see this structure more carefully, these gold nano particles are the 

conducting domains and this collagen is the matrix or the base.  

Now, if you imagine such collagen bundles in the entire matrix, which with such gold particles, 

what would, what would one try to deduce, given the discussion that we have been having, the 

most important conclusion that would have is, there is no direct contact between these two gold 

nano particles, though they are very closely situated mostly in terms of few, few nanometers. There 

is no direct contact. 

So, what kind of transport would be happening? Yes, it would be percolative transport. And that 

is what was reported in this work. That just by decorating them with gold nano particles, they were 

able to form a percolative network of conducting domains, such that in a matrix, when they were 

studied for I-V characteristic, they found a finite value of resistance within collagen fiber networks.  
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In a similar work, in a similar work, they introduced iron into collagen fiber network. And then 

they compared the I-V characteristic of collagen decorated of collagen decorated with iron and 

collagen by itself without any kind of metal nano particles. When they compared and they used a 

kind of current sensing atomic force spectroscopy, which means there is a very small tip by very 

small means, this tip diameter would be around hundreds of nanometers, or maybe less than that, 

with this they apply. 

So, this they bring to the surface very close, this separation would be around 10 nanometers, or 20 

nanometers. And then they apply field, since the separation is very less they could even since the 

current, which is generated after completing the circuit. And when they did this experiment, what 

they found was? There was a 6 times enhancement after iron nano particles were introduced in the 

collagen nanofibers.  

This is similar to the result that we saw for polymer nano composite in the previous slide, where 

there was around 14 times change 1014 times change in the resistivity values, when the packing 

fraction of conductive filler elements were increased. So, this is a similar situation just that here 

collagen, which is a kind of animal protein is used.  
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Now, one would reason that what is the use of all these studies, they have done some extensive 

and very sophisticated experiments, what is the use of all these studies? So, one of the important 

reasons why collagen was chosen, chosen to perform such experiment was that, A it is abundantly 

found animal protein and B it has a very long shelf life, like it can last at least for 14 years, when 

kept in a proper medium.  

Now, how would this help, how does this information help, let us say you want to make an implant, 

which requires collagen fibers to be compatible with the place, where it has to be implanted. And 

there has to be some kind of a signal that you want to see upon changing the, let us say you have 

a system where you want to implant a collagen-based sensor.  

And then you want to measure, if this particular system is observing is observed some change or 

not, when you do that, since these are biocompatible materials and collagen will promote, it has 

been reported in this particular work that it will promote stem cell formation. We can see that; this 

particular application can lead to development of many different biosensors. Similar is the case for 

this particular application also. 

So, we saw to summarize this particular lecture, we saw how disordered systems can be used in 

biological systems to understand their physical properties, their structural properties, to understand 

how the electrical transport happens in biological systems, how they can be modified to make them 

electrically conducting and how this percolative transport occurs. All these things are very useful 



for any biomedical engineer to design such biocompatible systems with using biomaterials, or 

biocompatible polymer composites.  

And once we understand the electronic transport properties, we can engineer the structure by 

modifying. Let us say the percentage composition of filler elements that we just saw, it can affect 

the conductivity, we can also change its structure all these, all these modifications can be 

performed and different novel kind of devices can be developed. So, I hope you enjoyed this 

lecture. If you have any kind of doubt, please feel free to put your questions in the forum. Thank 

you so much.  

 

 


