Design for Internet of Things
Prof. T V Prabhakar
Department of Electronic Systems Engineering
Indian Institute of Science-Bengaluru

Lecture - 38
WebSockets

Folks, let us look at another very exciting protocol which is called WebSockets, fine?
And why should we study this WebSocket may be something that you may want to
ask yourself. I will show you a demonstration. As usual Vasanth and Abishek have set
up a demonstration. But you should understand the philosophy for WebSockets, okay.
(Refer Slide Time: 00:53)

\ MT HATT lew

%J" g “%‘I»Tm\ L\M’Wﬁ
3

5 d\) T:""
7 ot
 Ohlire edotw % @id‘“wﬂzﬂgwk g‘\

bbb o
- Qi Jimivg w09

Let me put, I put down this very small picture for you which is talking of MQTT
publish, right? These are small 10T nodes. These are very small 10T nodes and they
have the capability, they are perhaps running a lightweighted Paho client, okay. And
they are able to publish their data. This may be publishing, this can be publishing, this

can be subscribing.

And there can be many publishing nodes and there can be several, you know
subscribing nodes. All that is fine within this network, okay. But think of a situation
where there is a human who is sitting on the other side of the cloud, other side of the
internet. He is in front of some PC or a laptop, and he is there physically. That means

he is sitting here physically, okay.

And he wants every time this node publishes, every time this node publishes, he wants
to see this on the screen here in QuickTime. He has to see it and it should be in a low
latency situation, extremely low latency, okay.

(Refer Slide Time: 02:02)

T bmed wﬁb tadn ,{, Qabas& Real Hemnt e Commondehor

b e Jun Ly, il i G
TcP
-~

it — Tl
s M—%w?

517 1 Y\J["T(y COV\N.

. G\demMW"J’
fa d"‘!f‘_

. o & bl.-hym,mﬁ
Lot ey
ik

So it should be reliable. It should have real time communication with near zero
latency and it should allow you to do bidirectional communication. These
requirements have to be met, okay. Now how to do it? These are very small nodes,
which perhaps do not even have the ability to transmit data directly to the cloud. They
may have a very small radio like Bluetooth low energy or they may have a small radio
like IEEE 802.15.4 and 15.4e, okay.

These kind of radios are what these nodes have; low power, small range and they are
able to communicate. Let us say such nodes while they can communicate
successfully, within themselves in a distance of let us say 50 meters, 75 meters and so
on. They obviously do not have the capability to directly give it to the cloud. So you

obviously need some sort of a gateway device.

Let us say the gateway device of interest is something like this Linux, Raspberry Pi,
okay, either running Linux or running Raspbian or one of them. Now this system has
the ability to aggregate all the published data and also pass on all the subscribed data,
okay. Assume that you are still looking at, this is not offering the broker. This is not
really a broker, not a broker. That is the point.

In other words, it is not the MQTT server. It is not the MQTT server. The MQTT
server is still in the cloud. This Raspberry Pi is just aggregating data, MQTT data
from several publishers and so on and uploading this MQTT data directly. Now as |
said, you want to meet this requirement. What is that requirement we have in mind? It
should meet, it should be reliable, it should be real time, near zero latency should be

there.

And the way to achieve that is this host okay, this host establishes a connection to the
cloud system, I will call that B, A to B uses WebSockets. This is a protocol that they
may use. Why, is the question? If you use WebSocket between A and B and from B to
this laptop, I will call this C. B to C is another connection. A to B is one, B to C is one

more, okay?

If you do like this okay this also can be WebSocket connection, okay. You cannot do
A to C that is not possible. Because A has no clue who is asking for data. Please note
A to C if it communicates that means you have broken the idea of MQTT, which is
not allowed. What is the idea of MQTT? Publishers and subscribers are not known to

each other. There is no end-to-end knowledge.

Publishers do not know who are all the subscribers. Subscribers do not know anything
about the publishers. Go back to the ThingSpeak example. You pick data from San
Diego some website, right? How do they know that you are sucking the data from

them? They do not know.

Similarly, ThingSpeak also gave you other publicly available things you could
download by an Excel file and you could actually you know build your own
application. That is one way of building the application. What about live data that is
coming into ThingSpeak? You want to get the data live into you. One way is you set

up your own channel, you upload the data and do it.

The other is you subscribe to certain channels and expect them to give you data every
time you are published. That is another way, right? We will not get into that detail. So
therefore A to C is not going to work. A has to go to B. B has to give it to C. And this

should happen in extremely low latency condition, okay. Zero latency, it should be

real time and it should ensure reliability.

The one mantra for all this is TCP. TCP provides you reliable communication and it
does not have real timeness though, right? Because there is a certain amount of
overhead associated with if you look at applications which use TCP, applications like
HTTP and so on, they are not really amenable for real timeness. Also uses TCP. This

can give you real timeness.

It can give you low latency, okay. It can give you bidirectionality. None of these
things are possible with HTTP, although both of them use TCP. The question is why?
Firstly, this is using a single connection, single TCP connection unlike HTTP and it
provides bidirectional connection and it uses extremely small amount of, small
amounts of data. And | will point you to one paper which | was reading which will
help you to understand that. So let us go and look up that paper.

(Refer Slide Time: 08:13)

Comparison Between MQTT and WebSocket
Protocols for loT Appliczllionﬂ Using ESP8266

ciberse M. B ivcina. O W M Caoscdomti. brid P ¥ Oliveio

R L —
1hin comcept ary rarsag ooy and
Fuimtnr cud

prmscol. Tabieg e
S AR vy
: Tdematry Trampent

ml’q.l I-" e of WebAaton b
cpria Sun MOTT i appdeadons w3 KTT o 21

-
v—. | wlhcoond sererfing b S dn wwd rebews prosenbod
[T

In this paper, this is a paper which | tried to download. And it will tell you about
comparison between MQTT protocol and WebSocket protocols for 10T applications
using a very popular chip called ESP8266. If you did not know about 8266, you better
know it. It is one of the most popular platform node which you can buy. And you can

experiment heavily with ESP8266, okay.

That is not the point. | am also not going to read this paper in great detail, okay. But |
am going to tell you what exactly WebSocket is in comparison with MQTT, okay.
(Refer Slide Time: 08:50)

Absract—NAs the Jaterset of Things becemes e pogrelar,

indag 18l arv arsbag nare and
raeew comemon aod accoedle. Bexkde fat, high perfoemsance and
read-tiese applicvuenc roaire x bre latxncy pestecel Takoous the
wpocty inlu wocvusl, s ek w0 copare the sppliodion
laser petneeh prodeodds: Mooege Quove Tekomctrs Trmspart
wind WSkt wing ESPA2E6 (54C with TEEE 302110 and
Nodejs servers Bor date eschonnze, wsdng She mest popalar
pevtrcel smghancatstine feend In GHbub, coaddering faplcs like
ocunentatien, roand-trip these of pockapes udag lecal riwark
aod memary alecaled s » Geviow. Daperissmial Sods vere
perfarmad o nxssare bocncy By caloalaliay the o diffaresce
of pockets exchumped betwecn o sover sl an ESPAMS wsdng
by prommcots. 11 bes bty Foond thot the wse of WebSodket
oce appesgeiate T MOTT in spplications with BTT of o
bt | mdBsecond anverding oo the data snd comenns pressnsd
Ie Guat rtiche.

L INTROOUC TN

As e ImeTrat prosency grows 13 peoprke’s Bves, the &
apmer of ime gt pendiees able o make weS comection
and exchange infoceiation deteeen the users of others devices,
are bocomng even mseee coneon asd wossibie. Thes reay
shape owr lvieg wndbeds 35 ey offer posibidities of
mossipemere. Inference, and comprebeasion of envinamen
indicmoes [1). This L namred loterser of Things
(BT can Be eaphorad it sevend secas ted paposes, that oo
2n base indisine, inevgont, hesith, snd safiry deperiments,
reactiing the teal users |2

Tone BT projocs devdopuoeul, it is iooessary.

o A hardwaee, node up of sersoes. actuators, e enbodded

conmm; n bendware;
o A maddlewars for dea ansdysac and wonge;
o A oooesadbie locecface, adapted 1o deferers plastormis |1

Redornng m e find and second) mopecs, Sis amich

o | Weews 0 whs. wwnr ahinwana

Trassfies Peotoood (HTTPL thert has showa 10 be et when
the sendng thes iverval o knoan snd when thicinteral » mr
wnnall, i e casenple in waer cosvammpiion dals Inenmicion,
hat could he sert hourly

Odreraise, when the application reguines o wnall i
son itereal (bekow SO0 millsecosdal sving the protocul
incrcees sipgibicastly lakercy o, netwedk tniffac, and e
pockagr ene. thes muking the spplicaben smabe (4]
Merag s latency o oee. acw prowceds like
Mewiages Quens Tekamely Trassport (MQTT) aed WebSocker
were devzhoped whach are goong W Be compeed in duis
antiche, Theso vao peatocols ave differences, e car be iad
Geperdiig 0o the spplication with e sane perpose. Foe the
coenparson, were asalyond g o qualisgive apecty of
each pm : bakescy m differcal etsstare: anl wncust of
PICOCoatdler programeing semory occuphed by the ibary
Dt isplemneats the corugication protoced. The ket ooe is
3 fendamental Easoe bousae: BT esed microccatlen may
barve 3 lirw memory yet, on e onder of kiobyes, mcreasing
1o few megbytes in modem rmodels. For the companson was
wed exrh prococad implermentimon. foend on Girbuh (3] o
reposnories sike.

A Siwilar Wavks

Now if you look at low latency, this paper is saying if you look at low latency
applications, MQTT of course offers you certain amount of low latency, and
WebSocket also offers you latencies. These protocols have differences. You may
think that they are low latency applications, but there are differences between them.

And this paper is actually making comparison and presenting some nice interesting
results about the latency. But that was not the point we started off, right? We wanted
to understand a little bit about WebSocket itself.

(Refer Slide Time: 09:30)

WebSocket protoanl win developal 1o mes corslant et
eacharge detucen chont and serwer ot suppornad cardier from
HITP [7]. The poeotocel corsists in & complete budiczctional
coetmmmusticalion Cuaroc] ot woeks ol 2 sangle wobdd [3],
as well 3a baving an ayacheono Sremmaimication (e coatrasd
wilth HTTF pretinacly, in odher wieds, boeh des con anl it
anytime whik the consection s established

The protecol is Avided B0 ta0 pans. handskake and daa
tanfes Io e lendlake, boicdly the chizet asd e serve
setirlidy izl oiomunecation wang HTTP ad o o, W)
15 the detmlt. In thos Sra commmicanion. e chem raquests
B Compuniation type updite thie ome verifiod, die request
iv vdideod e e duis enchunge can be dose wing the
WehSocket prieoced (Fig. 2)

15or comim atlon, dissegardieg 1P, TCP and TLS I n’vg
overbed, 2 siegke HTTP soquedt could carry i
00300 byies of mctalals phas ccbics. In cminsl,
Socket peotnoel uers 3 csstom benary framing Soemal that
dvides oo message 000 000 of are frames. When dhese
fratses reack ¢ Goslitation Bey e pived wd the sender is
rastifid thad he eatire message has been roceived. Fach frume
hesder can bo 2 1o 10 Bates in sz i st by 1he server and 6
10 04 byses B sent by Be cllern (o olent must 280 2 maskieg
key 30 prevemn cache podsoaing amacks), WedbSocket Is ala
comsalered coe of the sl versalib: s ot meibods
avsilable, bocais, the astimicalion capebilsie. thagh
o Apphication Progrnmmag Briedoces (AR
and seby peoticols. an exanple of (NS is the compression and
ruliplening exvicaviom (9]

doigned 10 Be lightwegld, opes and casy o stiplencal,
epesially in contoxts whse foe intorset can be copessine, huy
o Bandwbith, 1 rot saciey ar when ihizing oo ombedded
Govice Witk Luned Mmooy resouces of peocessing 104

In pohlih-sabeanbe pedters wad o B0 MOQTT, fhe moe-
sges enchapge between Affesees clems s theough of o
scever, celled the becker. The boker Bliers the messapes
arad dBsinbutes Saem w0 the chicsts scooeding o e lopic -
an Wentifer cach mesoge has The diaw Gn be as 10T
Gevice, Web epplicanon. moNle apphconion among odhers
Thowe abo pullish 2 scwgges w0 e ok with & kpx
are célal publiden and thoee who abscribe cne or mone
fogcs for reading specihs mossages ane called sebacmbers
Ihe subscnbers can mooche messages from o romher of
putlishers and can seed them 10 others sutucobers, o Clen
can be both publisher asd valecriber. AR Be Gicents edsblah
the comratine with the beckies The peblahesy do mot know
the deaineon of mescages wont and e sshariven do noe
knos the origin of messazes received. (11 An example of
anchiocure ssieg (his pudcn o oshows s Fg 1.

Fgus 1. Fablibeancrbe sk cargh

The frersal for a calml peckel of 3 meospe wing the
peosecnl 15 dvaded detween hised header, sanahle header and
poykoadd The Sxed Seadber as the 9w of ran bytes and the
varahhe heoder and payboed sae con range om oo o N

Let me show you what exactly | mean by the WebSockets advantage. Look at this
paragraph folks. It is beautifully written, okay. It says as far as communication,
disregarding IP, TCP and TLS framing overhead a single HTTP request, could carry
an additional 500 to 800 bytes of metadata, plus cookies.

This is a huge amount of additional 500 to 800 bytes of metadata which it will have to
carry with every HTTP request, okay. In contrast WebSocket protocol uses a custom
binary framing format that divides each message into one or two more frames. It
divides it into one or two more frames. When these frames reach a destination, they

are joined together, these frames are all put together.

And the sender is notified that the entire message has been received. Each frame
header can be 2 to 10 bytes in size if sent by the server, and 6 to 14 bytes if sent by
the client, okay. A client must add so many other related things related to cache
poisoning and all that he writes that. So WebSocket is also considered one of the most
versatile data transport methods available, because of the customization capabilities,

through of application programming interfaces, and all that.

So the point is, look at the size reduction in terms of the additional data bytes which
are carried in HTTP, as compared to that of WebSockets. No comparison at all, folks.
Where is 500 to 800, as compared to each frame carrying only just 2 to 10 bytes, the
header, right? So this is what is the key point. Because HTTP is in other words is very
heavy and it is request response. And I will show you what | mean by that.

(Refer Slide Time: 11:33)

The format for a control packet of & message using the
peotocol 5 divided between fixed header, variable header and
paylond. The fixed header has the size of two bytes and the
variable header and payload size can range from zero lo N
bytes.

MOQTT has three Quality of Services (QoS) levels 10 mes-
sage delivery

o QoS 0 (At mast once dehvery) Messages are delivered al

most once or 10, is pot stored by cither party and there
is no acknowledgment of delivery on the network

o QoS 1 (At least once delivery) Messages must be deliv-

eredd at least once, the sender stores and tres w send 4

¥ P el — Wbiahe preed message until it receives a confirmation, so the receiver
vin receive and process a message several times,
gore 2 HTTP sl WebSockel protocals communkion fow, sowe; » QoS 2 (Exactly once delivery) Messages are delivered
hpbn.co (modified) exactly once, the message is stored in the sender and
237

QUSRI At DR rin VTG borm ILEE Xpiore, Restnchors Joon

Look at this picture. This picture is telling you some fantastic insights into why
WebSocket is very important. Look at the arrows. You asked for something, you got
something. You asked for something, you got something. You can never get
something without asking. In other words, you have to request response, request
response. But look at WebSocket, you say GET WebSocket. One arrow goes in one
direction.

Now look at the number of arrows coming back. With just one GET, you are getting
data continuously in your own real time. You may ask for something else and then
you may ask for something else, and so on. So it is essentially telling you that the
protocol is very different from that of HTTP. Although it starts with HTTP, as the
prime protocol, it switches to WebSockets, after connection is established by what is

known as a option, which is called update, okay.

You send an update, and then it switches to WebSockets. That is the key point.
Anyway, we will come to that as we go along. Continuing this story here, the cloud
services like 10T Hub, or ThingSpeak, all of them are servers, also called brokers.
They actually support WebSockets. So you can use WebSockets, directly from this

Raspberry Pi System to this cloud based server, you can run it over WebSockets.

That is all | wanted to say. This can run over WebSockets. Therefore, any MQTT
message published by this node automatically shows up here in QuickTime under low

latency because this Linux, Raspberry Pi is actually running WebSockets to the cloud

based system. Maybe it is I0T Hub, maybe it is ThingSpeak or whatever, right? And
that guy in turn, has the ability to push the data from B directly to C and essentially

provide you data in QuickTime.

So this is what we should be looking at. There are several applications for
WebSockets. One of them is online editing of a file. Two people are on either side,
they are editing a document, and you want to maintain real timeness, when you are
editing the document, then you use WebSockets. Industrial monitoring is another

application. Online gaming is another application.

So all these things put together, folks, we will make the protocol very exciting for you
to work on, particularly when you are looking for low latency and providing your real
timeness and bidirectionality. Let us now focus back on the demo. In the demo, what |
wanted to show you is the following.

(Refer Slide Time: 14:33)

2)
- {
- My
+ i
S|
2L i \
W y

: |
W

So let me show you the demo here, directly here. This what we have here is a
chamber. There are two fans on top. These are what below the fan what you see those
is essentially like a heat sink. What you see below is essentially a Peltier coolers.
There are two coolers there. There are two fans and therefore there are two coolers.

There is a heater inside the box, semiconductor based heater, which is nothing but a
Peltier junction which is placed inside. | cannot open and show you, but do not worry

about it the idea of the experiment that I want to show you is we want to maintain

certain fixed temperature for inside this chamber, okay. Now every time the chamber

heats up because of the heater inside these fans will rotate and make the system cool.

Now every time you want to heat you stop these two fans essentially switch off the
Peltier and switch on the heater which is inside and that will heat up the chamber and
maintain a certain temperature inside the chamber. Think of this kind of chambers
where you need to maintain extremely low temperatures typically for carrying
vaccines and so on. This may be a useful portable unit.

What you see here is Raspberry Pi. And what you see here this part with these lights
switching on and switching off essentially is a PLC board okay. This is programmable
logic controller board, which is essentially ensuring that the chamber of interest is
maintaining a certain temperature. Now this board actually is transmitting data to a
controller system which is shown here on this screen.

(Refer Slide Time: 16:13)

Atrbutes

Features
[p— 443,00 Voo oo o,

30°C 29.95° C

You can see now what you see on the left side is the desired temperature which is 30
degrees it has been set. The actual temperature is a little above that 30.05, it is
actually changing dynamically as you can see. And then the thermoelectric cooler is
ON why because the temperature has gone a little above and therefore it has to switch
ON the cooler. And then the thermoelectric heater is OFF, okay.

So these heaters can go ON, OFF, ON, OFF depending on where you set your

temperature. Right now it is at 30 degrees, right. And you want to see this data in real

time, is it not. You want to see this data in real time as it is happening. Basically this
is an application, what you see is an application. This application actually uses

WebSockets. Now how do you know it is using WebSockets?

I will explain to you a very important tool which you must use if you are working on
networks, 10T and so on and that tool name is called WireShark, okay.
(Refer Slide Time: 17:20)

Wivhade — Wiveless— Wb
EM&—‘
P ek '§m.€-§g~r_*

This tool will examine anything that is going on a wireless link like a Wi-Fi link or
Ethernet link. It is a sniffer, it is a packet sniffer, okay. And | will show you that
indeed the packet sniffer is able to sniff and capture the WebSocket packets. And how
does it look? Now we will go and look up that.

(Refer Slide Time: 17:56)

14 UE S h G NEe NG Ieprg AW Lk 1R
L XEQL Y,
| wwmischat]

So this is a WireShark window as you can see right on top is written WireShark. And
what Vasanth is actually doing is he has picked the WebSocket based packet. You can
see on top is written WebSocket. You can see there, maybe you should click on that
WebSocket. Right, there you see you click it there you will see that it is indeed a
WebSocket packet.

And you can see that there is information about the WebSocket right there. There are
four masked packets and all four of them are indeed the WebSocket packets. Recall
what | mentioned to you about chunking the whole packet into smaller sizes and that
is where the real timeness comes up. You can see that it is actually taken into four
parts, okay.

(Refer Slide Time: 18:46)

X goe

Now click on that you see some data there. You have temperature sample value, you
have last update, then you have the sampling rate, then some information related to
the topic and so on, path and so on. If you take the next packet, it has other
information which essentially is the state of the cooler, the fan rpm, the last updated

value, the topic of interest, path and so on.

If you take the next packet, you will see information related to fan rpm, heater state
and the last update topic and so on. In other words, this whole application which is,
which we are demonstrating with this system here, you will see now, right? You know
that the rpm, fan rpm means essentially this is the rpm of the fan. Heater state, heater

is inside | mentioned to you.

These are the coolers, there are two coolers here, this is the cooler state. All this
information which is captured by these 10T sensors is actually getting uploaded. And
we are showing you that this information is actually coming via WebSockets. And
essentially that is the information that you are conveying. You may be wondering

what is this screen here, where is it coming from?

Well, what | have actually done is, this is the Raspberry Pi that you see. And this
Raspberry Pi has the ability to run WebSocket connection to a laptop, okay. And the
screen that 1 am showing you is a laptop. The laptop and this Raspberry Pi are

connected over a wireless link and they are in the same subnet.

So essentially what you are seeing is the WebSocket transmission over a wireless link
between the aggregation. Maybe you should understand this from this picture. These
are the 10T nodes. This could be as | mentioned, 802.15.4e or 802.15.4. Both of them
are IEEE and also it can be Bluetooth link. Now this Linux host R pi, which | show

you here, right here, this one, this one here, this R pi is nothing but this R pi, okay.

This one is transmitting over Wi-Fi to a laptop. And there is a human here who is
sitting and watching the screen. And what is the screen he is watching? The screen
that he is watching is this screen. This is the screen, this exact screen where
WireShark is running. So this screen, this is nothing but the screen, laptop, laptop

screen. And what are the tools running on this?

One tool is WireShark. And the other tool that he is running is this application, which
is essentially using WebSocket application. And how does the WebSocket application
look? Let us go back to the screen.

(Refer Slide Time: 22:02)

Features
[T

32°C

Okay, this is actually a web page. But what you see inside is the WebSocket
termination, okay. The data is received over WebSockets that is what | am showing
you here. And then put it onto this web page, which is easy for you to connect. So

essentially, the data is arriving on WebSockets.

The screen that you, smaller screen that you see this arrow screen is indeed the
WebSocket screen, reception of packets, and then we posted back on the create a web
page and then put the data back there. So this is something which will allow you in
WebSockets will allow you to control, to monitor, to actuate because it is

bidirectional.

It will allow you to monitor you know, basically it will be able to monitor, you will be
able to actuate, you will be able to do communication, bidirectional communication in
real time, with low latency between your 10T nodes, actuators and sensing nodes and
applications that are out there on the internet.

I hope this demonstration was useful so that you can also use WebSockets wherever
these requirements have to be met. But before I close, as usual, | always want to tell
you that if you want to learn more about WebSockets the most authentic source is
indeed the RFC.

(Refer Slide Time: 23:24)

So let me take you to the RFC and directly show you the RFC. The RFC is here. And
this is an important RFC. You can see this is RFC 6455. It is published in 2011. | am
not going to go through this RFC because it is going to take time. But the most

authentic source, if you want to know more about WebSockets read this RFC.

And the ones that are highlighted are just to give you an idea of the fact that whatever
| explained is it is a two way communication and so on. And what is important is it
also tells you why HTTP is not a good idea because of the problem related to request
response. And the fact that HTTP is not really two way communication protocol.
WebSocket protocol is designed to supersede existing bidirectional communication
technologies but yet take benefit from existing infrastructure, okay.

(Refer Slide Time: 24:33)

So now you see, as | said, you begin with HTTP. I highlighted that here, and then you
upgrade to WebSocket. This is very important. That is why | highlighted this. Same
here. The client asked for an upgrade, the server will upgrade and also tell you that
yeah, | am fine, | can upgrade. So let us talk WebSocket and then everything becomes

real time, low latency, single TCP connection and so on and so forth.

So please read this RFC for very authentic information about the protocol itself. As |
mentioned to you, it is indeed a TCP based protocol. Yeah, so that is about what |
wanted to tell you about the WebSockets.

(Refer Slide Time: 25:22)

tiog wokeny ’)

22 FLONUARY 2021 | SEALEWAY

loT Hub: What Use Case for WebSockets?

‘(:\

There is also this nice little article on 10T Hub, which is from Azure. Azure also

supports WebSockets as much as ThingSpeak also supports WebSockets and 10T Hub
has published a small article, what are the use cases for WebSockets? Please do read
this protocol.

(Refer Slide Time: 25:43)

e v Ty T T,

ang responses

HTTP WebSocke! !

« fequast

e 8) B8
O i [)
| [

You will see the nice things that they write here, how HTTP and WebSockets are
different. You can see the arrows and understand it lot better. It is actually, if you
request you will get a response in HTTP, which is unlike in the case of WebSocket
and is a highly scalable solution.

(Refer Slide Time: 26:00)

T T T T T Ty O Ty e T W T e T e T e IOy W T e e T sy
feature. This tutorial will give you more information about using the MQTT Webclient

should you need it

As WebSockets are built over HTTP, the standard HTTP ports apgly on the 10T Hub,
that Is to stay 80 Instead of MQTT's 1883 and, for secure connections, 443 Instead of
MQTT's BB

For developers, plenty of code libraries exist to facilitate the connection between your
web applications and the 1oT Hub. One such Library that you may wish to take a look
at Is the Eclipse Paho library, which provides scalable open-source implementations of

messaging protocols for Machine-ta-Machine (M2M) and loT applications
Conclusion

Now you know all about WebSockets, the part they play in providing a connection
suitable for the rich functionality of many web apps, and how you can use an MQTT
over-Websocket network to facilitate communication between your own web apps and
your loT Hub. Don't hesitate te check out our documentation for more infermation and

help with these topics. Have fun!

And WebSockets are built over HTTP and standard, you know the standard HTTP
ports applied to 10T Hub, with the stay as 80, HTTP uses 80 instead of MQTTs 1883.
And for secure connections that is 443 port number. Instead of MQTTs 8883, right.
What is also interesting is what you can do with Eclipse Paho. For developers plenty
of code libraries exists to facilitate connection between your web applications and loT

Hub.

One such library that you may wish to look up is the eclipse Paho library, which
provides scalable open source implementation of messaging protocols for machine-to-

machine communication and loT applications. Thank you very much.

