
Design for Internet of Things

Prof. T V Prabhakar

Department of Electronic Systems Engineering

Indian Institute of Science-Bengaluru

Lecture - 38

WebSockets

Folks, let us look at another very exciting protocol which is called WebSockets, fine?

And why should we study this WebSocket may be something that you may want to

ask yourself. I will show you a demonstration. As usual Vasanth and Abishek have set

up a demonstration. But you should understand the philosophy for WebSockets, okay.

(Refer Slide Time: 00:53)

Let me put, I put down this very small picture for you which is talking of MQTT

publish, right? These are small IoT nodes. These are very small IoT nodes and they

have the capability, they are perhaps running a lightweighted Paho client, okay. And

they are able to publish their data. This may be publishing, this can be publishing, this

can be subscribing.

And there can be many publishing nodes and there can be several, you know

subscribing nodes. All that is fine within this network, okay. But think of a situation

where there is a human who is sitting on the other side of the cloud, other side of the

internet. He is in front of some PC or a laptop, and he is there physically. That means

he is sitting here physically, okay.

And he wants every time this node publishes, every time this node publishes, he wants

to see this on the screen here in QuickTime. He has to see it and it should be in a low

latency situation, extremely low latency, okay.

(Refer Slide Time: 02:02)

So it should be reliable. It should have real time communication with near zero

latency and it should allow you to do bidirectional communication. These

requirements have to be met, okay. Now how to do it? These are very small nodes,

which perhaps do not even have the ability to transmit data directly to the cloud. They

may have a very small radio like Bluetooth low energy or they may have a small radio

like IEEE 802.15.4 and 15.4e, okay.

These kind of radios are what these nodes have; low power, small range and they are

able to communicate. Let us say such nodes while they can communicate

successfully, within themselves in a distance of let us say 50 meters, 75 meters and so

on. They obviously do not have the capability to directly give it to the cloud. So you

obviously need some sort of a gateway device.

Let us say the gateway device of interest is something like this Linux, Raspberry Pi,

okay, either running Linux or running Raspbian or one of them. Now this system has

the ability to aggregate all the published data and also pass on all the subscribed data,

okay. Assume that you are still looking at, this is not offering the broker. This is not

really a broker, not a broker. That is the point.

In other words, it is not the MQTT server. It is not the MQTT server. The MQTT

server is still in the cloud. This Raspberry Pi is just aggregating data, MQTT data

from several publishers and so on and uploading this MQTT data directly. Now as I

said, you want to meet this requirement. What is that requirement we have in mind? It

should meet, it should be reliable, it should be real time, near zero latency should be

there.

And the way to achieve that is this host okay, this host establishes a connection to the

cloud system, I will call that B, A to B uses WebSockets. This is a protocol that they

may use. Why, is the question? If you use WebSocket between A and B and from B to

this laptop, I will call this C. B to C is another connection. A to B is one, B to C is one

more, okay?

If you do like this okay this also can be WebSocket connection, okay. You cannot do

A to C that is not possible. Because A has no clue who is asking for data. Please note

A to C if it communicates that means you have broken the idea of MQTT, which is

not allowed. What is the idea of MQTT? Publishers and subscribers are not known to

each other. There is no end-to-end knowledge.

Publishers do not know who are all the subscribers. Subscribers do not know anything

about the publishers. Go back to the ThingSpeak example. You pick data from San

Diego some website, right? How do they know that you are sucking the data from

them? They do not know.

Similarly, ThingSpeak also gave you other publicly available things you could

download by an Excel file and you could actually you know build your own

application. That is one way of building the application. What about live data that is

coming into ThingSpeak? You want to get the data live into you. One way is you set

up your own channel, you upload the data and do it.

The other is you subscribe to certain channels and expect them to give you data every

time you are published. That is another way, right? We will not get into that detail. So

therefore A to C is not going to work. A has to go to B. B has to give it to C. And this

should happen in extremely low latency condition, okay. Zero latency, it should be

real time and it should ensure reliability.

The one mantra for all this is TCP. TCP provides you reliable communication and it

does not have real timeness though, right? Because there is a certain amount of

overhead associated with if you look at applications which use TCP, applications like

HTTP and so on, they are not really amenable for real timeness. Also uses TCP. This

can give you real timeness.

It can give you low latency, okay. It can give you bidirectionality. None of these

things are possible with HTTP, although both of them use TCP. The question is why?

Firstly, this is using a single connection, single TCP connection unlike HTTP and it

provides bidirectional connection and it uses extremely small amount of, small

amounts of data. And I will point you to one paper which I was reading which will

help you to understand that. So let us go and look up that paper.

(Refer Slide Time: 08:13)

In this paper, this is a paper which I tried to download. And it will tell you about

comparison between MQTT protocol and WebSocket protocols for IoT applications

using a very popular chip called ESP8266. If you did not know about 8266, you better

know it. It is one of the most popular platform node which you can buy. And you can

experiment heavily with ESP8266, okay.

That is not the point. I am also not going to read this paper in great detail, okay. But I

am going to tell you what exactly WebSocket is in comparison with MQTT, okay.

(Refer Slide Time: 08:50)

Now if you look at low latency, this paper is saying if you look at low latency

applications, MQTT of course offers you certain amount of low latency, and

WebSocket also offers you latencies. These protocols have differences. You may

think that they are low latency applications, but there are differences between them.

And this paper is actually making comparison and presenting some nice interesting

results about the latency. But that was not the point we started off, right? We wanted

to understand a little bit about WebSocket itself.

(Refer Slide Time: 09:30)

Let me show you what exactly I mean by the WebSockets advantage. Look at this

paragraph folks. It is beautifully written, okay. It says as far as communication,

disregarding IP, TCP and TLS framing overhead a single HTTP request, could carry

an additional 500 to 800 bytes of metadata, plus cookies.

This is a huge amount of additional 500 to 800 bytes of metadata which it will have to

carry with every HTTP request, okay. In contrast WebSocket protocol uses a custom

binary framing format that divides each message into one or two more frames. It

divides it into one or two more frames. When these frames reach a destination, they

are joined together, these frames are all put together.

And the sender is notified that the entire message has been received. Each frame

header can be 2 to 10 bytes in size if sent by the server, and 6 to 14 bytes if sent by

the client, okay. A client must add so many other related things related to cache

poisoning and all that he writes that. So WebSocket is also considered one of the most

versatile data transport methods available, because of the customization capabilities,

through of application programming interfaces, and all that.

So the point is, look at the size reduction in terms of the additional data bytes which

are carried in HTTP, as compared to that of WebSockets. No comparison at all, folks.

Where is 500 to 800, as compared to each frame carrying only just 2 to 10 bytes, the

header, right? So this is what is the key point. Because HTTP is in other words is very

heavy and it is request response. And I will show you what I mean by that.

(Refer Slide Time: 11:33)

Look at this picture. This picture is telling you some fantastic insights into why

WebSocket is very important. Look at the arrows. You asked for something, you got

something. You asked for something, you got something. You can never get

something without asking. In other words, you have to request response, request

response. But look at WebSocket, you say GET WebSocket. One arrow goes in one

direction.

Now look at the number of arrows coming back. With just one GET, you are getting

data continuously in your own real time. You may ask for something else and then

you may ask for something else, and so on. So it is essentially telling you that the

protocol is very different from that of HTTP. Although it starts with HTTP, as the

prime protocol, it switches to WebSockets, after connection is established by what is

known as a option, which is called update, okay.

You send an update, and then it switches to WebSockets. That is the key point.

Anyway, we will come to that as we go along. Continuing this story here, the cloud

services like IoT Hub, or ThingSpeak, all of them are servers, also called brokers.

They actually support WebSockets. So you can use WebSockets, directly from this

Raspberry Pi System to this cloud based server, you can run it over WebSockets.

That is all I wanted to say. This can run over WebSockets. Therefore, any MQTT

message published by this node automatically shows up here in QuickTime under low

latency because this Linux, Raspberry Pi is actually running WebSockets to the cloud

based system. Maybe it is IoT Hub, maybe it is ThingSpeak or whatever, right? And

that guy in turn, has the ability to push the data from B directly to C and essentially

provide you data in QuickTime.

So this is what we should be looking at. There are several applications for

WebSockets. One of them is online editing of a file. Two people are on either side,

they are editing a document, and you want to maintain real timeness, when you are

editing the document, then you use WebSockets. Industrial monitoring is another

application. Online gaming is another application.

So all these things put together, folks, we will make the protocol very exciting for you

to work on, particularly when you are looking for low latency and providing your real

timeness and bidirectionality. Let us now focus back on the demo. In the demo, what I

wanted to show you is the following.

(Refer Slide Time: 14:33)

So let me show you the demo here, directly here. This what we have here is a

chamber. There are two fans on top. These are what below the fan what you see those

is essentially like a heat sink. What you see below is essentially a Peltier coolers.

There are two coolers there. There are two fans and therefore there are two coolers.

There is a heater inside the box, semiconductor based heater, which is nothing but a

Peltier junction which is placed inside. I cannot open and show you, but do not worry

about it the idea of the experiment that I want to show you is we want to maintain

certain fixed temperature for inside this chamber, okay. Now every time the chamber

heats up because of the heater inside these fans will rotate and make the system cool.

Now every time you want to heat you stop these two fans essentially switch off the

Peltier and switch on the heater which is inside and that will heat up the chamber and

maintain a certain temperature inside the chamber. Think of this kind of chambers

where you need to maintain extremely low temperatures typically for carrying

vaccines and so on. This may be a useful portable unit.

What you see here is Raspberry Pi. And what you see here this part with these lights

switching on and switching off essentially is a PLC board okay. This is programmable

logic controller board, which is essentially ensuring that the chamber of interest is

maintaining a certain temperature. Now this board actually is transmitting data to a

controller system which is shown here on this screen.

(Refer Slide Time: 16:13)

You can see now what you see on the left side is the desired temperature which is 30

degrees it has been set. The actual temperature is a little above that 30.05, it is

actually changing dynamically as you can see. And then the thermoelectric cooler is

ON why because the temperature has gone a little above and therefore it has to switch

ON the cooler. And then the thermoelectric heater is OFF, okay.

So these heaters can go ON, OFF, ON, OFF depending on where you set your

temperature. Right now it is at 30 degrees, right. And you want to see this data in real

time, is it not. You want to see this data in real time as it is happening. Basically this

is an application, what you see is an application. This application actually uses

WebSockets. Now how do you know it is using WebSockets?

I will explain to you a very important tool which you must use if you are working on

networks, IoT and so on and that tool name is called WireShark, okay.

(Refer Slide Time: 17:20)

This tool will examine anything that is going on a wireless link like a Wi-Fi link or

Ethernet link. It is a sniffer, it is a packet sniffer, okay. And I will show you that

indeed the packet sniffer is able to sniff and capture the WebSocket packets. And how

does it look? Now we will go and look up that.

(Refer Slide Time: 17:56)

So this is a WireShark window as you can see right on top is written WireShark. And

what Vasanth is actually doing is he has picked the WebSocket based packet. You can

see on top is written WebSocket. You can see there, maybe you should click on that

WebSocket. Right, there you see you click it there you will see that it is indeed a

WebSocket packet.

And you can see that there is information about the WebSocket right there. There are

four masked packets and all four of them are indeed the WebSocket packets. Recall

what I mentioned to you about chunking the whole packet into smaller sizes and that

is where the real timeness comes up. You can see that it is actually taken into four

parts, okay.

(Refer Slide Time: 18:46)

Now click on that you see some data there. You have temperature sample value, you

have last update, then you have the sampling rate, then some information related to

the topic and so on, path and so on. If you take the next packet, it has other

information which essentially is the state of the cooler, the fan rpm, the last updated

value, the topic of interest, path and so on.

If you take the next packet, you will see information related to fan rpm, heater state

and the last update topic and so on. In other words, this whole application which is,

which we are demonstrating with this system here, you will see now, right? You know

that the rpm, fan rpm means essentially this is the rpm of the fan. Heater state, heater

is inside I mentioned to you.

These are the coolers, there are two coolers here, this is the cooler state. All this

information which is captured by these IoT sensors is actually getting uploaded. And

we are showing you that this information is actually coming via WebSockets. And

essentially that is the information that you are conveying. You may be wondering

what is this screen here, where is it coming from?

Well, what I have actually done is, this is the Raspberry Pi that you see. And this

Raspberry Pi has the ability to run WebSocket connection to a laptop, okay. And the

screen that I am showing you is a laptop. The laptop and this Raspberry Pi are

connected over a wireless link and they are in the same subnet.

So essentially what you are seeing is the WebSocket transmission over a wireless link

between the aggregation. Maybe you should understand this from this picture. These

are the IoT nodes. This could be as I mentioned, 802.15.4e or 802.15.4. Both of them

are IEEE and also it can be Bluetooth link. Now this Linux host R pi, which I show

you here, right here, this one, this one here, this R pi is nothing but this R pi, okay.

This one is transmitting over Wi-Fi to a laptop. And there is a human here who is

sitting and watching the screen. And what is the screen he is watching? The screen

that he is watching is this screen. This is the screen, this exact screen where

WireShark is running. So this screen, this is nothing but the screen, laptop, laptop

screen. And what are the tools running on this?

One tool is WireShark. And the other tool that he is running is this application, which

is essentially using WebSocket application. And how does the WebSocket application

look? Let us go back to the screen.

(Refer Slide Time: 22:02)

Okay, this is actually a web page. But what you see inside is the WebSocket

termination, okay. The data is received over WebSockets that is what I am showing

you here. And then put it onto this web page, which is easy for you to connect. So

essentially, the data is arriving on WebSockets.

The screen that you, smaller screen that you see this arrow screen is indeed the

WebSocket screen, reception of packets, and then we posted back on the create a web

page and then put the data back there. So this is something which will allow you in

WebSockets will allow you to control, to monitor, to actuate because it is

bidirectional.

It will allow you to monitor you know, basically it will be able to monitor, you will be

able to actuate, you will be able to do communication, bidirectional communication in

real time, with low latency between your IoT nodes, actuators and sensing nodes and

applications that are out there on the internet.

I hope this demonstration was useful so that you can also use WebSockets wherever

these requirements have to be met. But before I close, as usual, I always want to tell

you that if you want to learn more about WebSockets the most authentic source is

indeed the RFC.

(Refer Slide Time: 23:24)

So let me take you to the RFC and directly show you the RFC. The RFC is here. And

this is an important RFC. You can see this is RFC 6455. It is published in 2011. I am

not going to go through this RFC because it is going to take time. But the most

authentic source, if you want to know more about WebSockets read this RFC.

And the ones that are highlighted are just to give you an idea of the fact that whatever

I explained is it is a two way communication and so on. And what is important is it

also tells you why HTTP is not a good idea because of the problem related to request

response. And the fact that HTTP is not really two way communication protocol.

WebSocket protocol is designed to supersede existing bidirectional communication

technologies but yet take benefit from existing infrastructure, okay.

(Refer Slide Time: 24:33)

So now you see, as I said, you begin with HTTP. I highlighted that here, and then you

upgrade to WebSocket. This is very important. That is why I highlighted this. Same

here. The client asked for an upgrade, the server will upgrade and also tell you that

yeah, I am fine, I can upgrade. So let us talk WebSocket and then everything becomes

real time, low latency, single TCP connection and so on and so forth.

So please read this RFC for very authentic information about the protocol itself. As I

mentioned to you, it is indeed a TCP based protocol. Yeah, so that is about what I

wanted to tell you about the WebSockets.

(Refer Slide Time: 25:22)

There is also this nice little article on IoT Hub, which is from Azure. Azure also

supports WebSockets as much as ThingSpeak also supports WebSockets and IoT Hub

has published a small article, what are the use cases for WebSockets? Please do read

this protocol.

(Refer Slide Time: 25:43)

You will see the nice things that they write here, how HTTP and WebSockets are

different. You can see the arrows and understand it lot better. It is actually, if you

request you will get a response in HTTP, which is unlike in the case of WebSocket

and is a highly scalable solution.

(Refer Slide Time: 26:00)

And WebSockets are built over HTTP and standard, you know the standard HTTP

ports applied to IoT Hub, with the stay as 80, HTTP uses 80 instead of MQTTs 1883.

And for secure connections that is 443 port number. Instead of MQTTs 8883, right.

What is also interesting is what you can do with Eclipse Paho. For developers plenty

of code libraries exists to facilitate connection between your web applications and IoT

Hub.

One such library that you may wish to look up is the eclipse Paho library, which

provides scalable open source implementation of messaging protocols for machine-to-

machine communication and IoT applications. Thank you very much.

