Design for Internet of Things
Prof. T V Prabhakar
Department of Electronic Systems Engineering
Indian Institute of Science-Bengaluru

Lecture - 37
COAP-02

Alright, so let us look at some messages in the COAP protocol. Excellent messages,
easy to understand if you follow the simple logic that | am going to explain here.
(Refer Slide Time: 00:43)

-H
= Hohe

L |

/

You have a source, you have a destination. You have to send the messages from the
source to the destination. So you want to do it either confirmable mode, or non-
confirmable mode. This is how a message goes. This is source, this is a destination. |
send out a confirmable message. | am asking for a message. So | will use GET. And |

am asking for a resource, which is temp let us say, which is temperature.

Now two possibilities exist. The destination may give an ACK and actually supply
back the temperature or might, so | will say or, or might simply give an ACK and later
send back the message acknowledgement with the temperature value. That is also
possible, okay. So many ways by which you can do. So in other words, if you do it
this way, there is a name for it. And that name is called piggybacked

acknowledgments.



Beautiful, right? You are getting back the value here. And how do I know about it? Is
there a way by which one can understand this? Yes, indeed, it is right here, you see
this.

(Refer Slide Time: 02:14)

particuiarly sage ;
application requirements, such as repeated readings from & sensor.

Acknovledgerent ¥essage

martes Fireton 10 2 white. DO you wark to Cean R up for 3 $25n, [ke-new excerionce? And by the way, wecome back!

—r

Piggybacked response is included right in the CoAP acknowledgement message that
is sent to acknowledge receipt of the request for this response. That was actually a
request that was sent out. This was actually a request, okay. And that request was
given with a response. This is actually a response, saying that | received your request.

It is not actually a response, it is actually a acknowledging that it received the request.

And along with that, you are actually giving the response of the data, right, which is
22.5. That is really powerful. Energy wise, you can save, you can save one
transmission from destination to source. So it is quite energy efficient, right? Now
whenever you talk about requests, you want to match a request that I make to a client,

and the client should respond back to that request.

So | may have multiple requests, right? I may request for temperature, I may request
for pressure, I may request for humidity, | may request for motion data, so on and so
forth. So each one of these requests, | can ask the same destination because it is
equipped with all those sensors. So how do | differentiate one request from the other,

okay?



So how do you differentiate between from one request to the other, you essentially
have a request ID. In the parlance of CoAP, nobody talks about request ID, but it is
there in the RFC, if you look carefully. It is actually called token 1D, token 1D, okay.
So request ID is nothing but the token ID. | am requesting for some data from a given

sensor and | am getting a response back.

So as | said, it can be temperature, it can be pressure, request for pressure data,
request for humidity data, requests for motion sensing data, request for anything,
right. Light information, indoor light, outdoor light, anything. All these are requests,
which are making for different sensors, which are connected, and each one can be

associated with a request ID.

And that in the parlance of CoAP is actually called token ID. Now if | asked for
temperature, and you did not have the temperature with you, you may say | am
acknowledging your request. | will give you the temperature later. So what will you
do? How will 1 know that you are actually giving me the temperature value for the

request | sent? You return back the request ID. That is all.

| sent you with a request. You send it back with a request ID. | know that you have,
we are matching the request and the response. So token IDs are used for purposes of
matching the requests that we make. Request IDs, right? Request ID is given with a
request response. By returning it with the same token ID, you are saying that was your

request, this is the value, which I am going to give you. So that is about tokens.

Then there is also this notion of duplicates, that is with respect to packets, forget
about requests, request is a slightly higher layer, right? Packets are the ones that are
actually going out on the link. Those packets can get lost. And they have to perhaps
be retransmitted. That time, what they do, they associate each message with an ID.

And that is called the message ID.

So you have message ID and you have token ID. Token ID I think is clear in your
mind. So | will not discuss that. Message ID is what you should know about, okay.
(Refer Slide Time: 06:11)



Now what you do, in this CON-GET-Temp, you normally I will modify this whole
thing now, okay. | will modify this whole thing. And I will send CON, GET, message
ID, okay. What is the value? What are you looking for? You are trying to get Temp.
You send. Now this guy will give an ACK with this message 1D and he will give back

the value. This is how it actually works, okay.

So you see, he is returning back the message ID to tell you that this is what you sent
me. | got it. And | am responding back. It is possible of this situation also. When this
was sent, this was dropped, right? It did not reach. Then what will happen? Or you
can also think about the following, right? This may have reached, but it is on its way
back, it may have got dropped, right? Then this guy what he will do?

He will perhaps again ask with the same message 1D, he might ask with the same
message ID. If he asked with the same message ID, this guy knows, hey, I got this
here. Now he is asking me again here. So let me respond back. And now I actually
keep account that A, this is source B. This is source, this is destination. Looks like A

to B packet loss count I will increment by 1.

Second time it happens | will increment by 1. Third, fourth, fifth, I will increment by
1. So | actually know how good my link is with my destination. So that is how you
use the message ID. All of this is nicely captured, perhaps even better explained in the

RFC. So piggybacked response, separate response.



When a conformable message carrying a request is is acknowledged, with an empty
message, a separate response is sent in a separate message exchange. You can also
have an empty exchange. So let us see some pictures that will give you a better
understanding of the whole thing.

(Refer Slide Time: 08:40)

T zarted Freton bt 2 white. Do you mark bo ciean R up tory fesn, lioe-new eperence And by the way, weicome back!

~r

Look at this client, server. Client is asking for some data. CON, what is this? This is
the message ID. What happened here? He acknowledged back the message ID,
reliable message transmission. Okay, now you see. Reliability is provided by marking

a message as confirmable.

A confirmable message is retransmitted using a default timeout and exponential back
off between retransmissions until the recipient sends an acknowledgment with the
same message ID from the corresponding endpoint. When a recipient is not able to
process a confirmable message, it replies with a reset message instead of an

acknowledgment ACK.

That means if you send a CON, and | am not able to honor it, |1 will give you back
RST reset message. You can also do non-confirmable. When you do non-confirmable,
also you will have a message ID. It is again to assist receivers to detect losses,
duplicates and so on.

(Refer Slide Time: 09:46)



in 11IP
n (12

Fssarted Freton i 2 while. Do you sk o Jean R up for g esn, [Re-new coetence” And ty the way, welcome byck!

—

So again you see this is NON. Client, server, NON message ID to the server. And you
are not expecting an acknowledgment, but you continue to put a message ID to detect
duplicates to detect that there is a loss and so on. That is irrespective of whether you
want a response or not, right?

(Refer Slide Time: 10:08)

tartesd ek i 3 while. D0 you wark bo cies R up o 3 sk, Iike-new eerionce? And by the ey, welcome bck!

So the whole thing goes like this. Look at this beautiful thing, CON. This is message
ID GET, temperature, token. All of it is there here. What does this fellow say? | am
asking you a GET, | am asking you to please give me your temperature value. This is
my message ID. And this is my token, which I am going to give you, because | am

asking this token for this temperature value, okay.



Now this guy says, great. | am acknowledging you. | am going to put back your
message ID. | am giving you a response code, which is 2.05. And here is the content,
which is 22.5. | am also returning back your request ID or nothing but the token ID.
Great, this is done. Now let us look at this. CON, message ID, GET, please give me

your temperature. | am giving you one token, which is 0x72.

Now the server says | am acknowledging that | got your message. Response code is
4.04. Because what you asked | do not have, but please note | received your message.
That is why | am able to give you back with the same message ID and | am giving
you back your token. 4.04 corresponds to not found. This is also possible, okay.
(Refer Slide Time: 11:53)

ftszartedt Freton i 3 while. D0 you sk b cean & up fr 3 iesn, |ke-new exgerence? And by the wy, wecome back!

Now look at other types of messages. CON, message ID. Get me your temperature.
This is what the token | am going to give you. Acknowledgement comes. Pat comes
the reply as they say, acknowledging user, this is your message ID. Then what
happens? It is in low power. It is sleeping, fast asleep. Temperature sensor is down.

ADC is down. You are in deep sleep.

Only CPU responded back to the client by saying | got your message. Now it is time
for a timer interrupt to fire. When the timer interrupt fires on the server, the server
now wakes up completely, switches on the ADC, acquires the data, processes the
temperature data, packetize it and then tries to send it back. What does it do? It now

sets up a fresh CON message, you can see this.



It sets up a fresh corn message. But remember, it has not forgotten the request I1D. So
it has put back the request ID. Everything else is new. Put back the CON. Put a new
CON 2.05. That means response code is 2.05. And this is my temperature. For which
the client says | am grateful to you. I am giving you my acknowledgement for the
message ID you generated. And it says this is how it can do with a separate response.
(Refer Slide Time: 13:34)

tmartes Frekn i 2 white. Do you war. to e & up for 3 esh, [ke-new eerionce i the way, welcome back!

Now this is another message, non-confirmable message ID. Please get me your
temperature. This is the token | am giving you. ACK will not come because this is
non-confirmable but Providence is such that it has reached the destination server. So
server says okay, fine no problem. I am sending you back a non-confirmable message.

| have put a new message 1D, response code is 2.05.

But I am giving you back your token and I am giving you my value. Beauty right?
Send a NON you get back a NON. That is also possible. Let me also take you to other
parts of this. So | will go a little more rapidly so that | can point you to some key
points in this RFC about request and response.

(Refer Slide Time: 14:41)



T smarted Frreton i 2 while. Do you sk o Cean R up for g faoh, |ke-new aerence? And ty the wy, welcome back!

Yeah, so responses are important. So let me go into some details of this responses,
okay. Now after receiving and interpreting a request, a server responds with a CoAP
response, which is matched to the request type by means of tokens. We discussed this
already. There are some nice things about this.

(Refer Slide Time: 15:02)

L sarted Fredon i 2 white. Do you war bo Siean R up fora fo2sn, 1ke-new egerionce? And by the wyy, weltome back!

If you see 2, that means it is success. 4 means client error. 5 means server error. 2.05,
| showed you. 2.05 means what? 2 obviously means it is success. 2.05 that means the
request was successfully received, understood and accepted. 4 is what? The request
contains a bad syntax, but perhaps was successfully received, right? And therefore, it

could not be fulfilled. 4.04 is the same as the response code 4.



5 is server error, has failed completely. So that is what it is here, okay. And this goes
into great detail of talking about message IDs and tokens and so on, which I think you
must look up very carefully and understand this. Folks, so this is very critical. And |
must tell you that there is one more superly nice option in CoAP which we must

spend a little more time to understand.

And that comes to two important aspects. In CoAP, unlike MQTT, the CoAP systems
support discovery of services, okay. What were you doing in MQTT? In MQTT, you
knew that it is indoor light sensor, you knew it is an outdoor light sensor, which was
publishing. So your application was built by subscribing to those topics. Because you
knew the topics a priori. But if you did not know, how will you discover that indoor is
there?

How do you know let us say, in a network, a new sensor is added. For one window,
you may have had east window, west window may have had another set of sensors;
indoor, outdoor, motion detection and so on. You just added it, okay. But if | did not
know, if I am an application builder, and I did not know that is going to be an issue,

right? That problem exists in MQTT. It is not an automatic discovery of resources.

Whereas CoAP has that facility of discovery of resources. So if you do a GET to well-
known core, then all the resources available, will be issued by the server. It will
actually tell you what are all the services it is offering. So that is a beautiful option of
resource discovery that is available in CoAP. So that is what they mean by service
discovery. And I will show you how you can use that in an effective way. And also
you know build some interesting applications.

(Refer Slide Time: 18:13)



It sarted Fireton i 3 while. DO you sare bo Cen B up fory fesh, [ke-new agerience? And by the sy, welcome back!

| mentioned to you that CoAP as much as MQTT is highly secure. Please do look up
their DTLS stack, which is out there.
(Refer Slide Time: 18:23)

SaAl

Tt zartes Frekox in 2 while. DO you sk bo ciean & up tor 3 tresh, ke now experence? And by the ey, weitome back!

You can see that messages pass through DTLS before they are passed to the UDP.
Datagram Transport Layer Security, okay. So they get encrypted and they are sent
out. So this is an important thing. So what | did not explain to you is a outstandingly
good option for energy harvesting and battery operated devices if you use CoAP. And
that comes to a nice option, which is called observe. Observe is a very powerful
option.

(Refer Slide Time: 18:57)



Antonio ). Jam

("m.m Ketema, Jc"m‘ Hoebeke, Li Shi Tao Department of Information Technalogy
Ingrid Moerman, Piet Demeester Huawr Technologies and Commenications
Information Technology Departnsent Huawur Base University of Murcia

Ghent Universty - iMinds
Ghent, Belgium
\firstname Lastrame | i@intec ugent be

Abstruct—The Constrsined Application Protocel (CoAP) s %
lightweight protocel that enables the implemestation of
RESTFul conbodded web services, Observe iy one of the CoAP
extemsbons, which sllow servees 1 send every resource stale
change 0 Interested clients. In this paper we prosent a0
Intevesting extension to the abserve option, called conditional
abservation, where elients speeify notification erieerla along
thelr observation request. We evaluate the feasibllicy of
Implementing this on a constralned deviee and evaluate the
corvect operation for o simple scenario, 16 Is shown that the use
of conditional ebservations cum result in n reduced number of
pickets and power comsumption compared to normal ohserve
in combimation with client-side iering,

Keywonds « Condiviomal Ohservation, foT, REST, CoAP

Nanjing, Jiangsu, Ching
lishitaodd buawei com

Murcs, Spain
Jara/im es

the vption 1 11s GET request Whensver there 15 8 change of
the resource state, the server sends o nolification to the client
As such, observe offers the possibility for a client o bave an
up-lo-date representation of the resource without the client
having to constantly pall for changes. If the chent acts upon
these stites and 15 ondy micrested in specific saics, 1 up 1o
the client to filter out the volues sent by the server,
discarding resource saes that are not sigaificant enoagh for
115 purpose

A betwer alternative 1o these observations in combination
with ehient-side filtering could be 1o specity Mlrering coleria
when sending the ohserve request. This way, the server sends
 nutificabion only when o meels be purbeelsr enleny, ln
this paper we will present such an extension of the

observabon Tusctiosality by allowing nolificaton eriterid o
be specified along with observe requests. This approach will
provide o buth-in mochanism 1o the CoAP protocol 1o allow
transfer of states of interes), rather tn transferrmg all stutes

As sich, this paper contributes 1o further extend the
CoAP protocol by providing @ new, hghtweight extension o

| INTRODUCTION
Stesrt Objects bave been m we fue quite & while to
inferact with the real workl and  communscate the
information o bosts connected 1 the Intermet. They wsually

This is a paper | was reading recently of how nicely researchers have used this
observe option in CoAP in a very effective manner. You do not have to read so much
about it. You just have to know what observer is. | highlighted it for you here. It says
that observe is one of the CoAP extensions, which allows servers to send every

resource state change to interested clients.

Supposing the temperature was set to 22.5 degrees, okay. You do not report back to
requesting clients. But if it changed to 28 degrees, that is a huge change. Then you
report, not otherwise. That is fantastic. So you are observing a resource. Only if that
resource changes, you will actually intimate the client that has requested for that data.
That is what is shown here.
(Refer Slide Time: 20:02)

R EETTY

2.5 Cantent® |
i m T alur el * ==, I
T e L E e e e

GET S5t
.05 "Content” Obserse: 10
i Token: Qe
axftxria"TemperatureC” if="sensar”, Biscovery) ey
. <flwrt="Lightlus® f="Sansar
GET S5t ik !
Observe: 10 % Condilicn; |
Pirlisil. L2
Token: Duda . [ Registraton) e ¢
205" ontent”
Observe: 12
Tokan: Ted
il o L0 “Content®
Pavlai: 32,70 {Metification) [Ee—]
Taken: Divda
2,05 *Cangem” Conditice
" Paryload:; 23 &l
Observe:12
Token: Ouda

Payload: 23.4C

I |Maotitication]

Figure 1: Normal Observe

In raga nf aormal ahearvation if tha clisnt sinnld lika ta

Fi glun: 2 Conditional Obsery

Il APPRi
In this section, we will brief




You can see in this picture. What does it say? So let me expand it a little more so that
you understand it better. GET.well-known core. That means you are discovering all
resources. What happens? 2.05. That means 2 is for success. 2.05 content. What are
all the sensors out there? Temperature and light lux both sensors are there. The client

could easily discover what all the services that the system is able to provide, okay.

Now temperature and light lux both of them are there. Now using that it is saying that
now get s, slash s slash t, because it has found out that it is a temperature sensor is of
interest 28, you can see that. This is the s/t which is used here, okay. s/| might perhaps
correspond to light sensor. So it has said get this thing. Now before saying a GET it
made this nice option observe, okay.

And it gave a token, this is the token. It is a request ID. So for this request ID it put a
token. Now see what happens. This guy says 2.05 that means it is success. Puts back
the same token, puts back observe called 12. This guy says observe 10 that guy put
back observe 12 and put back that payload as 22.7, okay. Then again, it sent back a
notification.

(Refer Slide Time: 21:47)

v rh
I8
,,,,,, ' I
-
. l I v
LA S——
I l o
— Fignre 2: Canditional Observation
WL AsrRoacn

Figure 1 Normal Observe

1o ease of noeral observation, i the client wouk) like o
awitch on 40 4o condillonmp! system depending on current
lemperatare, it hs 10 send an observe regquest W the sever
Wheeever the fomperature changes, the node sends a
notlicativn to the cheot, However, the clent will not do
senthing wilh that information unless e Jemperalure 13
ahove a predetermined threshold. Theeefoce, many puckets
received from the seever are just wasted. Because fitlerng
ppens by e cliont, this approach has o

th und requires extra processing af’

In this section, we will beiefly present the new CaAP
Option called Coréaticn Option i ceder to support
conditivesl observations. A detaled description can be found
m [4]. This oplwon hes o be wed in combination with the
Obwerve option and can bath in request and respoase

Ina GET he €

I'he Condition
herween | and 3 b
companznt The he
bits), Value Type (2 bi \ |
valoe fleld could be betwesn D and 4 bvtes in size. The

aptice
Opticn in arder &
opton can be

the CoAP server
atest state change
is met, In our earlier example, the
me a mobfication only if the

conditons the cl
will send 2 nof
only when the ¢
client may say. s

commaonly oocurming fiftes

5
calisne use cases including, time seris, maximum resposse
L " ALl AL 1 L

In the normal observation if the client would like to switch on the air conditioning
system, depending on the current temperature, it has to send an observe request to the
server. Whenever the temperature changes, the node sends a notification to the client.
However, the client will not do anything with that information unless the temperature
is above a predetermined threshold.



Therefore many packets received from the server are just wasted. This is how you
have built the application. You are asking with observe, normal observation client
would like to switch on the AC depending on the current temperature. You are asking
the server to give it a temperature. It has to send an observe request to the server.

Whenever there is a change in temperature, the node will send a notification, okay.

But your application is built to do something only if it is beyond a certain
predetermined threshold, only then it will work. So what happens to all the packets
that the system sent? Nothing it is going to do. It is just going to be wasted. Because
filtering and processing happens by the client, okay. So this approach has a major
impact on the bandwidth. A server is reporting a change, but application says | do not

want that value.

So it has to discard. To avoid this what it does is they have proposed, the authors have
proposed this one. See look at what is in this here. It has given a value 22.7 with the
same token Ox4a. And again, the resource changed to another value 23.4. That time it

put back the same token and the observe and sent it again.

So you see every time there is a change in the value of this resource it is intimating
the application, which is nothing but the application running on the client side. This is
real waste of resources because client is building an application perhaps only if it
crosses 30 degrees, let us say. What is it going to do? Nothing. It is going to take this
22.7 data packet, throw it into the dustbin. Same with deleted.

Same with the other one. It may simply throw it out because it says it is not useful,
thank you very much, but I am not going to use it kind of, right. How to solve that?
You do a conditional observe. Well this is not there in the standard. So I encourage
you to try this, okay. This is what was proposed by the new authors, by these authors

of this paper.

You do GET well-known core. You find out that there is temperature and lux. Then
you go after the temperature, supply it a token Ox4a and you supply now a condition.
Amazing, right? You supply a condition t greater than so and so, only then you report



me back the value, okay. But what actually happened was 23.5 but you got this value
only for the first time. Because you sent a GET it is it is obliged to respond with a

reply, right?

First time alone it responds by saying, okay thank you very much. I understand your
condition. You want values greater than 23.5. No problem. Right now my temperature
IS 22.7. | am just giving you that value. Then lot of time passes and then maybe
something else, 23.5 is far off from 22.7. So it has to wait for a significant amount of

time for it to heat up, right? So some time passes.

Then what happens slowly from 22.7 perhaps it starts rising, and then it touches 23.6,
which is greater than the threshold set by the condition. Moment it crosses that
condition, again you get 2.05 success code, content, observe is 21. Same token, this is
important request ID and the response I1Ds are matching. And the condition is payload
Is set to 23.6.

So this way, one can also improve on the basic stack by using this observe in a very
interesting manner. And yet, sort of you know use this in energy battery constrained
devices. And that is why CoAP indeed is a very powerful protocol, which one can
depend upon. So that is about this efficiently observing 10T resources, | encourage

you to read up and understand it better.

But before we close on this particular topic, | am sure you have one confusion in your
mind. And that confusion is what | am going to try to tell you, okay.
(Refer Slide Time: 26:37)



[ 1 J{AIL S
-
E\W\jw“? Mj
o

So let us see, when should | use CoAP and when should | use MQTT? | am sure you
have this problem. | am very sure, okay. First thing is CoAP is fast. Because it uses
UDP. It is not heavy like TCP, SYN SYN+, ACK and so on. Whereas this is a bit |
would say it is a bit slow, okay. Three way handshake is required. Three way

handshake is required and then you can start transmitting data, right?

Three way handshake comes from TCP, TCP-SYN, SYN+ACK and then ACK. So
this is SYN. This is SYN+ACK. And this is ACK. This three way handshake should
happen. Only then data can start flowing from here, okay. So therefore, this delay is
there. There can be a significant amount of delay, setup delay before it can actually
start transmitting. So initial delay can be high.

So that is what | mean by fast and slow initial delay. But during passage of time, let us
say you have packet losses. You have packet losses, okay. Low, low packet losses.
You can have packet losses which are high, okay. Now | will remove it from here.
This will be fast. Parameter here is | would say connection. Connection is fast,

connection is slow. The second parameter is packet losses.

Packet losses, | will say low packet losses and packet losses high packet losses. See if
there are low packet losses okay 1% or less than 1% and so on, you are better off by
using this is fast here. You are much better off by using, this can again be slow, okay.
But if the packet losses are high, then I think this gets slow. And this may be much

faster because it knows how to work around large packet losses.



It does retransmissions and knows how to manage. Based on the packet loss it may
know how to increment the timeout timers, RTO okay retransmission timeout timers,
and so on. It is a sophisticated stack, right TCP. All that part RTO adjustment is very
much possible by TCP. Whereas these things do not really exist in the UDP world. So
folks, all I can say is the choice of CoAP and MQTT largely depends on the

application.

But | had just given you some numbers on how it can be used. More than you know
bandwidth and packet losses and so on, some of the features in CoAP are outstanding
for energy and battery related options, okay. Energy battery | will call it here.
Energy/battery, okay. This | would say is excellent. This is good I will say. I would

not give it bad marks, I will say it is good.

Same thing is that energy bar slash battery or lifetime systems and all so many levers
and hooks are available in CoAP, which is quite natural. But whereas with MQTT,
there are not so many options, there are options also. But | think it is much more

amenable in CoAP.

For example, if you are having a lot of sensor data, and you want to have timer based
interrupts of sensor data, which we discussed in the last class, | think CoAP and timer
based interrupts will work excellently well, they gel very well, right? And you look at
the observe feature, you can do based on certain observations every time it increases.
There is a change in a value, it can be reported in a trivial way.

And you can improve that by putting thresholds. You can not only put one, but you
can put multiple thresholds and improve it even more. So lot of things you can do
with CoAP. And of course, it is not that MQTT is very simple, extremely simple to
set up, right? I would say if someone gives it some marks for how simple it is

extremely simple setup, | will simply say setup.

This is extremely simple and amenable, available everywhere. This is okay. | mean,
you can still use a browser, or you can build your own CoAP system. | would say it is
simply it is good, okay. Setup is okay. It is not so bad either. So you can go on listing



like this folks, and then arrive at your own decision of what would be an efficient

protocol to run with.

For a sensor data, which is 16 bytes, no 16 bits let us say, bytes is too much, okay. For
a sensor data of 16 bits question is, does MQTT transfer more or CoAP transfers
more, it is not clear. So you may have to calculate based on the header length, and all
that, and then put down a number. And then see for yourself how good is for sending
2 bytes of data, whether it is good to send over CoAP or over MQTT.

And if the wireless link is of varying of one type, whether this is better, or the other
one is better, and so on. So I think this discussion will help you articulate it better. |
urge you to read the RFC documents very carefully, because lot of stuff is out there.

And we cannot cover everything there. Thank you very much.



