
Photonic Integrated Circuit
Professor Shankar Kumar Selvaraja

Centre for Nano Science and Engineering 
Indian Institute of Science Bengaluru

Lecture 9
Dispersion

Hello everyone, welcome to another lecture on photonic integrated circuit. In this lecture we

are going to look at material technology for integrated optics but going very specific about

integrated optics we need to understand the material and how optical energy interacts with

material. So, this is how you can expand your understanding from basic interaction to making

complex devices using this interaction, sometimes we exploit these interactions to create new

functionalities.  So,  let  us  look  at  what  are  all  the  primary  properties  that  one  could

understand.

So, basically when light propagates through a medium it undergoes a certain change because

material is going to interact with optical field and because of this atom that are around and

molecules that are around in a material it is going to affect our electric field. So, whether this

electric field that we talk about is constant across the frequencies that you are going to use or

are there any frequency specific interaction on and the other kind of interaction that you can

look at is the from the material itself, is the material isotropic? Is the material anisotropic?

So, based on the anisotropy or isotropic nature of the material whether the light will react to

this changes and then the next thing is whether the material is going to absorb the energy. So,

if the light is going to absorbed, if the light is going to be absorbed by the medium then your

intensity of light is going to reduce as you propagate through the medium all this combination

of effects that we just discussed can be of interest to realize various functionalities.

So, in this lecture let us look at the basics of this the first thing I would like to discuss is

dispersion. So, you might have heard about this word dispersion in various context and even

in our lecture earlier we have seen the origin of refractive index. So, what is the origin of

refractive index of a medium. 

So, we normally write reflective index as n + i k. So, what is the origin of n and what is the

origin of k? And they are related to the material property, very microscopic properties and we

know these properties affect light propagation. So, in this lecture let us look at a little bit deep

into how this affects  light propagation the first  thing I want to discuss is dispersion of a

medium.
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So, when you have a medium of interest and you are going to come in with a plane wave.

And now the material is characterized by a certain refractive index as a function of position

let us say. So, if it is a homogeneous material and if that is the case then comfortably you can

write as a function of r and if it is constant across we can just use a constant here n.

So, that means you have epsilon also a constant. So, once you have electric field interacting

with the material here it is going to interact with the dielectric constant and that is going to

create  a  displacement  field  of  D =  𝝴E.  Now we all  know that  this  is  all  a  function  of

frequency.  So,  for  a  given  electric  field  of  a  certain  frequency,  your  epsilon  and  the

displacement field also is a function of frequency.

So, when there is a change in the frequency of incoming field then your dielectric permittivity

here will also change as a function of frequency and this would give rise to an interesting

electro optic property. And the other kind of dispersion that you could have, let us say if it an

anisotropic material because then it is not a constant, it is a function of position let us say if

that is the case then your light propagation in x and y direction is now affected by refractive

index n.

So, we know this wavelength of light inside the medium is 𝝀o/n. So, now because you have

two refractive indices then your speed along x direction will be represented by  𝝀o/nx and

along y direction it is going to be 𝝀o/ny. So, now you can see that the material strongly affects

how light propagates through the medium; one we see the effect of electric field or effect of

frequency of this electric field on the displacement field.



So, as the light propagates you are going to create this polarization very specific to your

frequency but in the other case you have material that has two different refractive indexes in

two different directions. So, that means anisotropic. So, if that is the case the light that is

oriented in x or field oriented in x or y direction is going to see difference in the wavelength

and also speed as well. So, the speed of light is also going to change. So, that means based on

the property of the medium you are going to see interesting interactions with light. So, you

can understand all this by using classical electromagnetic theory. So, that is what we would

like to see.

So, in solid there are various properties that one can study; one is absorption, sometimes you

could have selective absorption and the next property is refraction, you can have electro-optic

effect because it is a function of electric field you can see optical effects, magneto-optic so

any change in the magnetic field could change the optical field here and then acousto-optic,

you could also see polarization effect and you can also see non-linear effect. 

So, these are all various effects that one could get from a solid, any material for that matter

not necessarily solid but in case of guided wave optics we primarily interact with solid. So,

that is the reason why it is appropriate to look at this in solids. So, one of this could be of

interest to realize a certain functionality or more than one of this property or phenomena one

could exploit and all this could be understood from electromagnetic theory. 
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So, let us look at some of the interesting interactions that are very fundamental the first thing

is  light  propagation  inside  the  medium.  So,  I  take  a  medium and  then  I  would  like  to

propagate this plane wave through this medium and I want to know what is the speed at

which light is going to propagate through this medium and let  me take a monochromatic

light. So, let us take monochromatic light E=Ee(ikz-𝟂t). So, this is a very simple monochromatic

that means single frequency.

So, we are comfortably choosing restricting our light to have a single frequency because we

know that the property of medium is frequency dependent in this case we want to understand

what happens if a light wave with a single frequency passes through a medium. So, we have



E and then E is nothing but a constant independent of space and time let us say E is a constant

with respect to space and time.

So, now when you look at this a very simple wave it is a sinusoidal wave and it has a phase

that is varying along the propagation direction z and also with respect to time. So, the phase

here can be written as,  𝝓 = kz -  𝟂t. So, this is the phase of your very simple propagating

wave. So, now if you want to understand how fast this particular wave moves we need to

look at  how the phase prorogates.  So, if  you take a very simple wave like this  and it  is

propagating through this and you want to understand how fast it moves the first thing that you

do is look at the phase.  

So, how the phase or the constant phase moves in space and time. So, that is how you will

find out how fast this particular wave is moving. So, in order to do that we need to force this

phase to be a constant. So, it should not vary over time. So, this is how you can easily find

out what this phase is and to be very specific you want this phase to be 0. So, the phase

change as you move along should be 0 you need to force that at all these points.

So, you see a constant phase and then the phase difference between these points the lines that

I drew here is all equal or the phase difference is 0. So, if that is the case then one can write

sorry this  d𝝓 = 0,  kdz –  d𝟂 t  = 0. So, now you can write kdz –  d𝟂 t  = 0. So, you just

differentiate  this.  So,  what  one  could  do  is  easily  rearrange  this.  So,  this  gives  you the

velocity.  So,  this  is  nothing  but  velocity  of  the  wave  specifically  we call  this  as  phase

velocity, velocity vp which is nothing but 𝟂/k. So, this is a important relation. 

So, now you can see how fast it will move. So, it is wave vector with a propagation constant

with respect to frequency. So, when there is a frequency change you do see a change in the

phase velocity. So, now this phase velocity is not a constant we already just mentioned that

and we also know that your refractive index in the medium is also not constant. So, what I

mean  by  that  is  your  refractive  index  n  is  actually  a  function  of  frequency.  So,  that  is

something that we already know from our earlier discussion. 
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So, let us look at what is the propagation constant of this the propagation. So, propagation

constant k is nothing but k = nko. So, this is something we have seen earlier as well. So, k can

be written as k = n𝟂/𝝴o and this is nothing but 2 n/𝞹 𝝀o. So, lambda naught is nothing but free

space wavelength, 𝟂o is the frequency, k0 is propagation constant of light in free space.

So, now the phase velocity is something that we know now. So, the phase velocity is now

given by vp = 𝟂/k. So, this is our phase velocity but then the phase velocity would change as

a function of frequency. So, that is what we call phase velocity dispersion. So, phase velocity

you have phase velocity dispersion and that is a function of frequency. So, we know that the

light  is  going to  travel  at  different  speed based on the  frequency that  you have  because

dn/d ≠𝟂  0.

Because,  that  is  what  you  have  because  of  the  dispersion  and  there  are  two  type  of

dispersions that you can have one is normal and the other one is anomalous. So, in normal

dispersion your  dn/d  is  𝟂 positive  and  here dn/d𝟂 is  negative.  In  other  words,  dn/d𝝀 is

negative, dn/d𝝀 is positive. So, we are sure that there will be dispersion we know that and

there are two slopes that you can have you can either have positive slope or you can have

negative slope.

So, for the positive slope dn/d𝟂 we call that as normal dispersion and dn/d𝟂 we call this

anomalous dispersion if it is less than 0. So, this is all for a single frequency analysis. So, that

is why we comfortably said it is a monochromatic, monochromatic signal here that one could

use in order to understand the velocity and the implication of frequency dependency on this



velocity. So, let us look at what happens if it is not a single frequency. So, in most of the

cases you will have photons of slightly a different energy. 
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So,  if  that  is  the  case  what  will  happen  and in  that  case  it  is  not  going to  be  a  single

monochromatic wave what you will have is a wave packet and wave packets is nothing but

group of waves  that  are  closely spaced,  this  is  nothing but  group of  waves  with closely

similar  wavelength  or frequency and they are all  combined and they move as  a  pack of

waves. 

So, they are packet of waves. So, how would they look like it is for some of you who might

have done signal processing it looks like an amplitude modulated signal. So, you will have an

envelope and you have the carrier  inside this  envelope.  So, they are moving along the z



direction.  So, they are of same frequency, pardon me for this frequency change here, but they

are all travelling at the same frequency and this is the envelope and this is our carrier.

So,  this  is  how a  packet  of  waves  would  travel.  So,  now let  us  look at  how one could

represent the propagation of this. So, we will have a frequency let us say there are two closely

spaced ones. So, here you have the carrier and you have the envelope. So, that is 𝟂1 = 𝟂o +

d𝟂 let us say a small difference there and then you have 𝟂2 = 𝟂o - d𝟂 which is -d𝟂 and the

corresponding propagation constant is k1 = ko + dk and k2 = ko  - dk.

So, this is our frequency and propagation constant. So, this is our frequency and this is our

propagation constant. So, how can we represent this wave in a very simple equation form. So,

let us say this packet the wave packet could be represented as we will just pick up what we

already saw earlier, Epacket =Eei(k
1
z-𝟂

1
t) 1 + c.c because they are going together Epacket =Eei(k

1
z-𝟂

1
t)

1 + c.c + Epacket =Eei(k
2
z-𝟂

2
t) 1 + c.c and by expanding this into trigonometric form.

So, this would become 2E{cos [(ko + dk)z  - (𝟂o +d𝟂)t] + cos [(ko - dk)z  - (𝟂o -d𝟂)]t} within

this. So, now one can rearrange this and once you rearrange you will get 4E{cos [( zdk - td𝟂)

cos [koz  - 𝟂ot]}. So, what see here this is the envelope and this is our carrier.

So, the resultant wave packets as a carrier which has a frequency 𝟂o. So, this is the carrier

that has a frequency 𝟂o and it has a propagation constant ko and an envelope that is cos( zdk-

td )𝟂 . So, now we have an envelope. So, we have a wave packet and it is propagating through

a medium and we can now calculate the speed at which this wave packet moves.
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So, let us look at the speed at which this moves. So, we have already seen this let us look this

envelope how fast this envelope can move. So, that is taken from the phase. So, let us look at

this velocity of the wave packet. So, let us look at the velocity of this wave packet and that is

given by zdk-td𝟂 =𝝓 should be equal to a constant phase. So, we have seen that this should

be a constant. 

So, now let us find the value the velocity here the group velocity in this case. So, because the

waves are moving as a group we can this as group velocity and thus that velocity is nothing,

it is given by dz/dt and that is nothing but the, this is what the velocity is. So, if we look the

velocity here it is going to give you d𝟂/dk. So, this is our group velocity. 

So, d𝟂/dk is our group velocity this is nothing but group velocity because it is a group of

waves and that is the reason why we call it as group velocity in order to differentiate this

from the phase velocity we put vg = d𝟂/dk  which is nothing but d𝟂/dk. So, z/t is what you

have and the velocity here is represented this way. The phase velocity and group velocity are

both velocities but then the phase velocity  represents a single wave while group velocity

represents group of waves. 

So, this is how a group of waves are going to move which may or may not be equal to the

phase velocity we will come to that shortly why this group velocity and phase velocities are

slightly different. So, the constant phase front that travels at group velocity but the group

velocity is the velocity at which the energy travels it is slightly different here. So, here if you

look at the wave packet. So, the energy at which this envelope moves is the group velocity. 



So, this whole uniform envelope that we have created because of multiple wavelengths are

very closely spaced frequencies are present and this is what the group velocity is all about but

in case of a phase velocity  it  is  a single wave.  So, the all  the energy is  propagated  this

particular velocity all the energy there but in this case it is not about the carrier. So, you have

a carrier 

𝟂o but the energy is not carried at the speed of this wave of frequency 𝟂o it is carried at the

speed of the envelope itself. So, that is going to be a difference here. 

Why it is, it is critical to understand this packet of waves with different frequencies compared

to a single frequency in most of the communication networks we use lasers with slightly

wider line widths that means you will have photons of slightly different energy and at the

same time we are going to use light with different wavelengths altogether. So, when you are

sending information through a channel, the channel will have its own dispersion and because

of that your single frequency or this multiple pulses with different wavelengths are going to

travel at different speed and it has implication on the information carrying capacity or the

speed of transport. 

So, this is our group velocity as I mentioned you we also have dispersion associated with this.

So, we call that as group velocity dispersion. So, similar to what we saw, so dn/d𝝀. So, that is

our dispersion, in the other words it is dk/d𝟂. So, we knew that the refractive index is a

function of lambda, here again we have the same issue. So, your refractive index or your

propagation constant is your dielectric medium is going to respond to this way.

So, this is nothing but and this is not equal to 0 and this is the reason why we have dispersion

and  this  is  what  we call  group velocity  dispersion  and  this  group velocity  dispersion  is

represented  by a  dimensionless  coefficient  and this  dimensionless  coefficient  is  called  D

which is given as D = cω
d2 k

dω2
. group velocity dispersion or in popularly called GVD group

velocity dispersion and you can expand this as D = 
2π c2

λ
d2 k
dω2

.

So,  this  group velocity  dispersion is  an important  consideration in  propagation of optical

pulses for the same reason that we just discussed it can cause broadening of individual pulses.

So, when you have a pulse with different frequencies it can result in broadening of the pulse

and it could change the time delay between different pulses of different frequencies and you



could have the group velocity dispersion, this could be, the group velocity dispersion this can

be positive or it can be negative, a similar way we saw the normal dispersion and anomalous

dispersion that we saw for the wave propagation, the group velocity dispersion will also have

positive and negative implications.
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Let us, look at how this can affect your pulse propagation through a medium. So, let us take a

popular medium here, let us take an optical fiber. We take an optical fiber I am going to put a

signal here so there is an input signal as a function of time I am putting a very simple signal

and this signal has let us say three different wavelengths. So, I have red and I have green and

then I have blue. So, look at it all at the same time. So, I am putting at the same time.

So, this is important. So, this is my 𝝀o and this is 𝝀o + 𝝙𝝀 and this 𝝀o - 𝝙𝝀. So, this is as a

function of wavelength but as a function of time they are at the same time we are putting it

and I am sending it through an optical fiber and let us see what happens at the output of this

individual colors.

So, how are these colors going to come out. So, if you look at the shorter wavelength, the

shorter wavelengths are going to come much early. So, they travel faster. So, they will arrive

first and then comes green and then is our red. So, you can see here already they come arrive

at  different  period of time as a function of wavelength.  So,  this  is  arriving,  sorry this  is

arriving first, it is a other way around this is arriving last. 

So, because of this you will have pulse broadening. So, the pulse are coming at different

point of time from different wavelengths and as a result you will have a broadened pulse. So,



when you have this difference in time of arrival of different wavelength you will have change

in the pulse width that you send. So, why are we interested in this pulse width. So, when you

are sending a signal you are going to send on, off signals. 

So, 0s and 1s are going to go through the system and when you have this kind of pulse

broadening the first pulse itself will take a while in order to arrive and it will broaden while

the second pulse will take an overlap here and the third pulse perhaps it will overlap like this.

So, when this overlaps happen there is no way to know where is 1 and where is 0 and because

of this of interference between the different symbols that we have here you will not be able to

capture the data. So, you will not be able to deduce anything from this received signal. So,

what you ideally want is just reproduction of whatever you have. 

So, in order to do that because they are going to broaden, we have to reduce the number of

bits we send. So, even when the broadening happens you will have enough dead time here to

get the next pulse. So, because of this you have to increase this time and what that means is

you can only send few bits at a time. So, you have to reduce the data rate because of this

group velocity dispersion. So, this is the main implication of having a dispersion affect your

transmission here.



(Refer Slide Time: 37:37)

So, let us look at some of the interesting aspect of this group velocity dispersion. You can

have  
d2 k

dω2
>0 . So, if it is positive long lambda wavelength travel faster than shorter lambdas

and your D > 0 here and now the other condition could be 
d2 k
dω2

<0 where your D < 0, then

your shorter wavelengths travel faster than longer wavelengths.

So, you can have both. So, you can have a broadening of a pulse you can also have narrowing

of  pulse  which  is  very  handy to  do  in  some of  the  interesting  optical  signal  processing

experiments and some optical signal processing functionality but you have to make sure that

you achieve positive and negative group velocity dispersion. So, that is very important. 

So, the group velocity dispersion is different from phase velocity dispersion. So, we are not

going to discuss about phase velocity dispersion at this point of time, we are more interested

in group velocity dispersion and implication of that when you propagate. And another way of

representing  this  group velocity  dispersion  quantifying  it  when it  is  travelling  through a

medium is through this particular relation which is given as D𝝀 = 
2π c2

λ
d2 k
dω2

 = - 
D
c λ

 = - 
λ
c
d2n
d λ2

and this is represented as picosecond per kilometer nanometer.

So, this coefficient is what we use to measure the chromatic pulse transmission over a fiber or

any transmission length for that matter. So, this gives us the effect of chromatic dispersion

along the fiber. So, it is given as picosecond per kilometer nanometer. So, for a given length



one can easily find out what this delay is. So, let us look at what are all the implication of

that.
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So, if you take a certain length of optical fiber L and you are putting a pulse. So, you are

putting a pulse and you want to know how long does it take. So, its T is the time it takes for

the pulse to reach there. So, T is the time it takes and it is easily given by T=
L
v g

 length over

the group velocity and let us say you are using a light source of certain spectral width. 

So, light source as a certain spectral width 𝝙𝝀 and now you can write  ΔT  that is the delay

that  you  have  could  be  represented  as  ΔT=
dT
dλ
Δ λ which  one  can  write  simply  as

ΔT=
dT
dλ
Δ λ =  

d ( L
vg

)

dλ
Δλ

  in other words  
ΔT=L(

d ( 1
vg

)

dλ
)Δ λ ,we canalready see that ΔT

 =

L.D.Δ λ where D is nothing but your the dispersion parameter and which we have already

saw seen that meter per nanometer.
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So, now we can write this d we already saw this D is represented as let me pull to our earlier

thing. So, you remember this. So, let us find out what this group velocity that we have could

be used to find out the change in the refractive index now. So, we are trying to find out from

the group velocity dispersion here how one can as a function of refractive index that we have.

So, we already know that this can be given as 
D=(

d ( 1
vg

)

dλ
)=c−1

d ng
dλ

=c−1(
d (n−λ dn

dλ
)

dλ
)
. 

So, the group index is nothing but ng=(n−λ dn
dλ

) which is something we have already seen

and once you navigate this group index is nothing but ng=(n−λ
dn
dλ

) . So, this is what we call

the group index. So, we know the refractive index n. So, that is for a single frequency and

now we have a group of frequencies and this group of frequencies will feel a slightly different

refractive index compared to a single frequency wave and that is the reason we represent this

as a group index and the vg = 
c
ng

.

So, this is our group index and this is our group velocity and c is our speed of light. So, now

what we have converted from a single frequency propagation through a group of waves that

are propagating through a system. So, with that we have now understood how a single wave

propagating though a medium experiences the property of the medium, in this particular case

the change in the refractive index and this change in refractive index has an effect on a single

frequency of a wave that is propagating but in reality you always have packet of waves.

So, when you take a packet of waves with slightly different frequency then it is not anymore

that single frequency concept you are going to see a combination of this multiple frequencies

going through. So, it is not a single frequency that dictates this is the speed at which we are

going to propagate, no it is the whole bunch. So, the energy that is being transported is not a

single frequency velocity it is going to be a group velocity. So, now all these group of waves

are moving at certain speed and also the speed at which they are moving will be affected by

the dispersion there. 

So, each frequency will have its own associated dispersion. So, all of this combined is what

we call group velocity dispersion. So, once you have the velocity dispersion you also have

refractive index change or refractive index dispersion we call this as group index. So, group



index, group velocity,  group velocity  dispersion all  these are important  concepts that you

should keep in mind with this we will end this particular session in the next session we will

see actually how an optical fiber manifests its dispersion. Thank you very much.


