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Lecture 36
Electro-Optic Effect

Hello everyone. So, let us look at the light interaction with the medium that would create
Electro-Optic Effect. So, we have briefly discussed this in the early part of the lectures, when
we talked about light interaction in anisotropic medium. So, where we looked at the index
ellipsoid, how the refractive index in different coordinate system is going to influence the
light flow, particularly, when the light is either linearly polarized or circularly polarized.

So, based on this anisotropy you could make light propagate or change its propagation vector
and also change the polarization as it propagates through. So, this is relatively passive process
as it propagates through the material,  based on the anisotropy you can go from circularly
polarized to an elliptically polarized light or you start from an elliptically polarized light and
then you can make a linearly polarized then elliptical again.

So,  these  are  all  the  different  polarization  states  you  can  achieve  by  using  anisotropic
medium. But now, the question is, is it possible to have external electric field influence the
change here? So, we are going to, we are not going to make it long enough and then just
passive. So, passive meaning your actions or your function is fixed based on the length and
the dimension. And now, I am not going to change the length. So, length is fixed but, I am
going to apply an external filed,  whether this field will  help me to make this conversion
possible. So, that is the idea here but, this idea is not very new, let us say. 
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So, this was already discussed a long time ago, this whole electro-optic effect by Kerr, who
discovered that even amorphous material, an amorphous optically isotropic material became
birefringent in a strong electric field. So, this was already something that we know a long
time ago, this was in 1875. So, this whole idea of having this property change when you have
an electric field was known. Whether it was not long that Pockel discovered a similar kind of
effect. But, a weak effect in crystals, specific, in specific crystals. What was the discovery
here? This discovery, this is 20 years later let us say.



So, it was around the 1900s. So, what he found was an isotropic crystal became a uniaxial
crystal. So, there was one finding and then the next finding was if you take a uniaxial crystal
it became a biaxial. So, this is all by applying an electric field or by inducing changes in the
material by applying a field and this Pockel’s effect unlike Kerr. So, in Kerr effect you need
very strong optical field where it was quadratic relation. But, in this case Pockel’s effect is
linear. So, that is an interesting thing here. 
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So, Pockel’s effect is linear  to the electric field that you have and this is not universally
found. So, that is why I mentioned here it is only on specific crystals not on all the crystals
that was that is available. So, we have many different type of crystals available. But, this
particular property is not available in all these crystals. So, these are only a certain class of
crystals that shows this Pockel’s effect or this electro-optic effect. And what all those, what is
the condition here? The condition is that the crystal must not possess inverse symmetry or
inversion symmetry in order to display Pockel’s effect.

So, the crystal, it should be a crystal should not possess inverse symmetry. So, the material
that we know most of them they are symmetric in nature for example silicon is one good
example, it has cubic symmetry. So, you will not have Pockel’s effect in a crystalline silicon.
So, you need to have an anisotropy or in this case you should have a non-inversion symmetry
to this material. So, we have already seen this earlier. So, what this anisotropy is going to
bring. 
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So, if you look at the wave propagation in an anisotropic medium, your displacement vector
is  a  function  of  the  dielectric  constant  that  you  have.  So,  your  i,  j  is  nothing  but  your
coordinates  x,  y,  z.  So,  one  of  this.  So,  your  εij is  nothing  butε ji.  So,  this  is  from the
conservation theory. So, this is all just a recap of what we have already read and seen and so
on. Now, we need to understand how this vector is going to look like when you say this is
anisotropic,  and that is something we all  know, the matrix or the index ellipsoid that we
already looked at in the earlier lectures.
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So, that is the index ellipsoid, when you have this anisotropy can be given by 
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So, this is our index ellipsoid. So, we can always find the effective index here. So, what is the
effective index of this medium and depending on the propagation direction and so on, we
should be able to find the two dominant directions that the wave is going to propagate.

So, we have two axes here. So, we have ordinary index and then you have extraordinary
index.  So,  what  is  ordinary  index,  ordinary  index  is  nothing  but,  where  you  have  in  a



uniaxial a crystal, where you have two axes with identical refractive index. So, the refractive
index identical along two axes here and the third axis, this is the third axis is called the
extraordinary axis.

So, this is primarily in the uniaxial crystals. So, in biaxial crystals you will have three unique
refractive indices.  So, that is  something that  we should take care of. So, in this  case the
ordinary index is where you have two indices that are identical while in the extraordinary
which is a different one. So, you have two set of refractive indices. Then if you have all of it
(identity), unique then we call that as a biaxial crystal. So, when you take these crystals we
have drawn this index ellipsoid and so on. 

So, based on the wave propagation along one of these axes, based on the magnitude of nx and
ny you will see the polarization influences the propagation here. So, now the question is how
do we bring in the electrical component here. So, because we do not know how the electric
field is going to influence this. So, what is the relation between electric field and the material
property that we have. So, the way that one could easily understand this is by expanding the
index ellipsoid that we have here. So, let us look at the Pockel’s here.
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So, the Pockel’s effect is nothing but, change in the refractive index when you apply a field.
So, that is what it is, but let us look, at the index ellipsoid and slightly modify it to our liking
because, if you look at the ε here. So, the ε can take six different values here. So, there are six
possible values I should not say six different, there are six possible teams that you can have
here.  Similarly,  you  can  write  our  index  ellipsoid  with  a  different  orientation  here.  So,
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So, the  (
1

n2 ), so this is something that you can represents the, what we call the dielectric

tensor  along the  different  direction  here  x,  y  and z  here.  So,  this  is  all  nothing  but  the
dielectric tensor, is nothing but the dielectric tensors. So, this is the dielectric tenor terms and
if x, y and z are the three different Cartesian coordinates here. And now, given the fact that
these are the coordinates that we have. Now, we can write our electro-optic coefficient here. 
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So, what is that electro-optic coefficient? So, now this is the refractive index the six refractive
indices there along different directions and there could be a change in this refractive index.

So, there is ∆(
1

n2 )1, ∆(
1

n2 )2. Similarly, you can write ∆(
1

n2 )6. So, these are all the terms that

will be influenced. What we are trying to understand is what is the change in this terms when
you apply a field. And that coupling term is nothing but our electro-optic tensor.

So, there is dielectric constant and you have your electro-optic tensor here. So, we represent it
by this matrix where you have r11, r21, r31, r41, r51 and r61 and then we have r12 and r13 and you
can write  rest  of  the factors  this  will  be r63.  So,  this  is  electro-optic  tensor  and you are
operating it with a field. So, the field is E1, E2 and E3 along the three different axes. So, the
unlike the dielectric tensors, even if the axes are misaligned or aligned along the principle
axes the cross product terms, the cross product terms here, the 4, 5 and 6. So, there three are
the cross product terms may not, will not be 0. 

So, what that means is when you align it to the right optical axes that means when the light is
propagating through that axis you will not find any difference to the propagating wave when
you apply electric field or it will not be affected. So, those factors become 0 but when you
have the cross product in this case even when you have alignment in the principle axis the
factors here are 4, 5 and 6 will not be 0. 
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So, one could write, for example, even with a crystal of cubic symmetry. A cubic symmetry
crystal you will have a matrix like this. So, you will have 0 0 0, 0 0 0, 0 0 0. So, now you
have r41 0 0, 0 r41 0, 0 0 r41. So, now with this tensor, so this is your electro-optic tensor, we
find this it is non-zero that means this particular material should be able to respond to an
applied electric field. So, when you have a 0 diagonal then whatever direction you apply this
field to, the resultant will be 0.

So, you will not have resultant change. So, your Δ here you have will be 0. So, what you are
looking at is the scenarios where your Δ here, so the dielectric tensor here should be non-
zero. So, that means you should have non-zero electro-optic tensors here. And there are ways
to achieve this by also picking the right orientation and so on. But this  is some material
property, so you cannot do much to these ‘r’ coefficients. 

But, what you can do is you can align your field accordingly. So, we have E1, E2 and E . So,
based on this orientation of this field you can take advantage of the non-zero factors that you
may have within this. So, this is r32, (()) (19:30) r34. So, based on their position you should be
able to exploit it and as I mentioned this is a material property. So, I am going to take two
materials  of that are of interest  that we will  you do some examples with it.  So, that you
understand it well. 
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So, let us look at those materials, one is a well-known material called lithium niobate. So,
lithium niobate is a well-known electro-optic material. So, let us look at its tensor. So, that
the tensor for this particular material this is all the non-zero tensors that it has. So, 9.6 for r13,
r22 here is 6.8 and r33 is 30.9 and then r51 is 32.6. And the ordinary refractive index is 1.8830
this is uniaxial one and this is 1.7367 and this r3 coefficients the unit is 10-12 millivolts. So, for
all of this. 

So,  this  is  for  lithium  niobate  let  us  look  at  another  famous  material  which  is  gallium
arsenide. So, gallium arsenide has r13 of 4.1, r41 is 1.4 again no is 1.8830 and ne is 1.7376. So,
this is all done using experimental techniques. So, we use experimental methods in order to
measure this electro-optic tensor. So, once you have these values you can take these values
and try to exploit this. So, I will go back here and then show you that this is the matrix here. 

So, the electro-optic tensor matrix now you can populate it based on the data we have and
then, electric field is what you apply and based on this we should be able to calculate what
will be the change in the refractive index when I apply a certain field. So, this is about the
basic understanding of the material system we have already seen this in a different form. But
now, we are going towards utilizing this material property for functional application. 

So, let  me just  write the note here that  I  just  mentioned that,  so,  crystals  with inversion
symmetry let us say, crystals with inversion symmetry will have all ‘r’ coefficients identical
to  0,  this  is  a  very important  understanding from this  when for  a  crystal  with inversion
symmetry this ‘r’ matrix becomes 0. So, that means you can apply any field that you want but
there will not be any change in the refractive index. So, that is one factor. So, the next one
that I mentioned is about the non-zero values. 

So, then for the non-zero values let us make a statement here, unlike dielectric tensors even if
you change, if the axes are aligned along the principle axes the cross products, the cross terms
rather, this case 4, 5 and 6 are not necessarily 0. So, that is an example that I just showed you
here. So, you can diagonalize it. So, that you can get most of this factors 0. But this is true
when you are doing a dielectric tensor. So, we normally do this, for this dielectric tensor
where you could (where is that, yeah), in the dielectric tensor because of this symmetry you
can actually make the cross products or cross terms 0, because, εij=ε j i. 

But, in this case we cannot. So, they do not. So, this cross product, cross terms will not be 0.
So,  that  is  another  important  note  that  I  would  like  to  mention  here.  So,  with  this



understanding of the material properties that we had an index ellipsoid and then how do we
compare this index ellipsoid with a system where you have an external field, so, for that we
need to bring in our electro-optic tensor. 

So, I have the dielectric tensor. So, the dielectric tensor is going to change, but how it is
going to change? By applying a electric field. So, what is the relation between these two?
This is coming from our electro-optic tensor. So, the electro-optic tensor is the strength of the
coupling between the electric field and the dielectric. 

So, if the electro-optic tensor is 0 there are materials where this tensor is all 0 as I mentioned
some material you will not have this inverse symmetry, so, they will have inverse symmetry
and when you have inverse symmetry all these values goes to 0. So, if that is that case you do
not have any effect of electric field. But, for materials that has non-inversion symmetry the
factors, the electro-optic coefficients here the electro-optic tensor matrix is non-zero.

So, when you have non-zero values even when you tilt the principle axes you can try to tilt it
whichever way we you want but, still it will be non-zero and because of this non-zero electro-
optic tensor, now I have non-zero values with the electric field. So, that means my dielectric
tensor now will  have a non-zero value when I have a electric  or change in the dielectric
tensor will have a non-zero value when I operate it with a field.

So, the change in dielectric constant is what we are trying to look at. So, now we have a fair
understanding of how the coupling happens between electric field and our dielectric tensor.
So, now let us put this to into use by using this understanding in a guided wave system. So,
now we are going to make a waveguide and then understand it which is something that we
would continue in the next class.


