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Hello everyone. So far we have been looking at power handling, so in all the passive devices that

we discussed we looked at how do we handle power. So, we had coupling of power between two

systems and we also had how to split the power and how to combine the power and how this

splitting and combining could be done in spatial way, so you can spatially put the light in one

waveguide or the other, you can split it in the ratio that you want, you can do it 1 to 2 splitting or

you can split from 1 to n, so all those power handling we had looked at.

But what can we do to handle wavelength? So, I want to have wavelength selectivity let us say,

so I want a structure to be very selective to a particular wavelength that I am interested in, so this

could be to realize a filter for example. So, I have n number of wavelengths and I want to pick up

only one wavelength from that, is it possible to realize in a passive geometry? And the question

here is how to achieve that? 

So, we have looked at this in a different device but did not emphasis on the wavelength. So, if

you remember we discussed about Mach-Zehnder interferometer. So, in the interferometer the

phase change causes change in the intensity, so when there is a change in the phase in one of the

arms you looked at the intensity change, it is a cosine function.

But then instead of changing the phase we fix everything and when we change the wavelength,

the input wavelength, so changing input wavelength is same as changing the phase for a fixed

wavelength. So, the phase change can be now replaced with the wavelength. So, the wavelength

change  through a  Mach-Zehnder  interferometer  will  give  you the  same cosine  type  transfer

function.

So, we do not have to think too much, so we already discussed this, so I am going to ask you to

go back and look at the  Mach-Zehnder  discussion that we had, how did we built the Mach-

Zehnder using two y junctions and so on. So, we keep the wavelength structure intact, so we are

not changing anything but we will change the wavelength, so when we change the wavelength

you will get the spectrum.



And  if  you  are  still  not  sure  about  it,  we  will  discuss  some  of  this  practical  device  and

measurement in the later part when we talk about the functional devices and demonstrations that

you can do with photonic circuit. So, now let us look at a slightly different way of implementing

this wavelength selectivity. 

In your introductory classes in photonics you might have studied something called Fabry-Perot

cavity, so Fabry-Perot cavity is a simple cavity where you have two mirrors both the sides and

there is a space between these two mirrors and the reflectivity of one mirror could be less than

the other in order to take the light out but nonetheless they are mirrors and the mirror is going to

reflect light and the light is going to bounce back and forth in this cavity.

So, not all the wavelength can fit into this cavity. So, that is something you also saw, so that is

the way of bringing wavelength selectivity. Let us briefly discuss this Fabry-Perot cavity and

then build on top of this Fabry-Perot cavity how we can realize a wavelength selective cavity

filter  which  called  a  ring  resonator  in  a  photonic  IC  based  implementation,  in  particular

waveguide based implementation of a ring resonator, let us look at that.
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So, let us say you want to build a Fabry-Perot cavity. So, Fabry-Perot cavity is basically having a

mirror this side and there is a mirror on the other side, so this is a distributed bragh mirror let us

say. And then there is a cavity of length L, so the lights that enters into this cavity will keep

bouncing back and forth.

So, it is going to be bouncing back and forth creating what we call optical cavity that you capture

the light inside. Now, light is entering so it will also go out. So, what will be the transmission?

So, the transmission depends on the reflection that we have and your phase factor. So, L is the

length of the cavity and n is the refractive index.

So, L is the cavity length, n is refractive index, lambda naught is wavelength and R is reflection

coefficient. So, this is a relation that you must have already familiar with if not you can brush up,

so it is already there. So, when you have high mirror reflectivity the smaller is the change in the

index required for any change in this particular cavity that you have.
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So, let us look at how this the spectrum would look like, the spectrum as a function of lambda let

us say, you would have very, this is wavelength selectivity that we are talking about a particular

transmission in this case. So, now this is for a certain reflectivity R. So, let us say this is R of 0.9,

so when you have very low reflectivity then the cavity would look something like this, this is

when R is let us say is 0.5.

And you can even reduce it then R 0.2 so when you reduce the reflectivity you are going to

reduce the contrast that you have between the trans the resonant or the cavity wavelength we call

this as lambda resonant wavelength to the off resonance or the light that is not captured. So,

another way to look at this the light that is captured inside is by looking at this cavity. 



So, let us say there is a length to this cavity and you have a certain wavelength of light, so I have

a certain wavelength of light lambda, so it has certain space to fit in. So, now the question is how

many wavelengths I can fit into this length L, so which is phase match, so that means I should be

able to fit this wavelength inside this particular cavity.

And that is an integral multiple of the let us say of the wavelengths that I have and wavelength in

the medium basically. So, how many such wavelengths I can fit into this particular lambda? So,

in this particular medium which has refractive index n, so that is why I am writing it as lambda n,

it is not lambda naught, so the refractive index here is n.

So, based on this we should be able to fit how many lambdas could be sitting in this, so it has to

be a whole number, so it has to be very close or equal to the length that you have, and that is the

reason why you have this 2 pi coming in into this picture because it has to be phase matched. So,

now let us take this whole understanding and then see how we can make a waveguide based

cavity. So, if you can look at this you have two reflectors and a cavity here.
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In principle you can also do this by using waveguide cavity a simple waveguide and then you

create a grating on the left side and then right the side. So, now this is the cavity length L and

then you have the reflectors on both the sides. So, we looked at this bragh, bragh reflectors on

this side and this side. So, you can simply corrugate or creates a perturbation where you could

have a lot of reflection within the system, so light will go back and forth and that would create a

cavity here and the same discussion what we saw with Fabry-Perot applies here.

But what we could do is something called a ring cavity, this is even more interesting. So, instead

of making the inline waveguide, what we could do is we can take a waveguide and then make a

ring next to it and this will act as a cavity. So, how are we going to couple light in and out? So,

we had reflectors here, so two reflectors or two mirrors were there and we were able to launch it

through this system because there is a transmission associated with this.

But in this case look at this region, this particular region, this is nothing but a directional coupler,

so directional coupler we looked at how the light could be coupled between one waveguide to the

other waveguide, so here that is exactly what we are trying to do. So, we take the light and put

the light into the cavity and the light would propagate through and then we could take the light

out. 

So,  this  is  something  that  one  could  realize  using  a  simple  directional  coupler,  so  you  are

coupling it in and out, so now we need to look at how this transmission should look like. So, let

us that can be given by the transmission and the coupling that we have inside this system. So, the



light that you need to couple in, so that will be given by kappa and the light that is coupling from

the ring into the waveguide is minus kappa, so that is opposite direction.

And you could have a transmission through the system as t, so E input and then E transmitted is

what we are looking at, so now the light that is going through the system is called Ei2 the input

to the cavity I can put this as Ei1 and t1 here so then the light is inputted that is input light and

then you could have one that is transmitted, so Et2 so E1 is going in and E2 let me do it this way,

this is Et sorry Ei2 and then Et2 is what is coming up.



(Refer Slide Time: 15:24) 

So, now you may want to see how this coupling could be visualized now. so you have Et1, Et2

and what you are looking at is the, what is the transmission as a function of input Ei1, Ei2 and

this is coupled through our kappas and t now. So, t is the transmission that we have kappa minus

kappa and just this is t star, so this is how you can easily come up with the matrix between or the

relation between the input field and the transmitted field. So, kappa square plus t square should

be equal to 1. So, that is the relation that we have, so whatever goes through and whatever is

coupled into the waveguide.
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So, that is something that that we just formulated but now we need to bring out how exactly we

are going to find out this coupling. So, the way to write this is Ei2 for example depends on Et1

and the phase that is that you are getting out, so let us, let us try to write what should be the

phase and what should be the beta before we start with it.
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So, beta is given by K times n effective, so you can expand this, so 2 pi lambda n effective is

your beta and now we can talk about the phase that you are going to have and the phase can be

given as theta here, so omega L over C or in other words 2 pi n effective times L divided by

lambda, so L here is nothing but 2 pi R.

So, what is the cavity length here? So, it has a certain radius R, so in this case L is the length, in

this case the whole circumference, so that is 2 pi R. So, then it becomes 4 pi square n effective

times R divided by lambda. So, this is the optical path length that light is going to take, so this is

the path length you are going to take. So, now you can write all our resulting equation Et1. 
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So, let us say Et1 is given as there is there will be a coupling loss factor here that is your alpha,

so alpha will be the loss factor or how much light is uncoupled here plus transmission times e

minus j theta divided by alpha t star plus e to the power minus j theta and you can do this for the



iE2 that is going in so where you have minus alpha K star divided by minus alpha t plus e to the

power of minus j theta and then Et2 which is nothing but minus K minus kappa divided by 1

minus alpha t e to the power j theta.

So, this is how the characteristics are going to look like when you change your theta or rather

your wavelength as you go through this, you can clearly see that this is a function of lambda. So,

once you have the coupling taken care so this is the transmission that you see and if you work it

out your Et1 will exactly follow this particular equation, so inverse of this particular equation, so

you can try to do that but this will be the transmission equation of our coupled system here, it

will be an inverse of that though.
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So, let me draw how that response is going to be, so we had a ring like this, so this is Ei and then

let us say Et so the output field. So, as a function of lambda and this is your transmission Et.

Well look, looks something like this and this is all the resonance wavelength and so on. So, now

the question is we have multiple resonances. Why do we have multiple resonances? Because in



Fabry-Perot cavity that is what we learned that there are multiple longitudinal modes that this

particular cavity can support.

So, it will be an integral multiple of a certain wavelength that you have. So, there are various

wavelengths  that  can  satisfy  this  particular  condition  and  that  is  the  reason  why  you  have

multiple wavelengths that could be captured inside this cavity. And the distance between these

two resonances is called free spectral range and this is called delta lambda and this delta lambda

is called free spectral range, in other words FSR and that is given by 2 pi over lambda dou beta

over dou lambda plus 1 or in other words lambda square by n effective times L.

So, this is more often used when you know the effective refractive index and if you know the

cavity length so we should be able to calculate what should be the free spectral range, so this is

how you can design. For example, you want very large free spectral range so that means you

need small l, so it means very small cavity. So, for large free spectral range we need small l, so

this is again very important to go back and confirm our theory right now. So, we said when you

reduce the l your free spectral range will increase so look at this.

So, I have two resonances here coming because there are two wavelengths that are very fit into

this particular cavity, so when I reduce this cavity length, so I have a small cavity and I have a

large cavity, so in this very small cavity only let us say one cycle could fit in let us say so the

other wavelengths that you could fit in is like this.

But then in this case if you look at it there are multiple wavelengths that can be fitted into this

particular so there are high, very low wavelengths and also very large wavelengths can fit into

this particular cavity so that is the difference between a large cavity and a small cavity. When

you take a small cavity the allowed energy levels are lower, this is again going back to our very

simple waveguide mode simulations.

So, there we also discussed that when your size is reducing, when the waveguide or the thickness

of  your  slab  is  reducing  then  the  number  of  modes  allowed  is  (())(24:28),  so  here  it  is

longitudinal mode and there it was transverse mode. So, you are looking at, this is equivalent to

V number, so the larger the dimension the larger the V number.

So, in this case the smaller the cavity length the smaller the number of longitudinal modes that

will allow only few wavelengths to survive inside that system, and that is what your free spectral



range here tells you about. So, that is another thing that you can take it out from here. The other

factor that we look here is what is the 3 dB bandwidth or full width half max, so FWHM we call

it. 
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So, let us look at what is that full width at half maximum. So, what is that full width half max

means so this is 1 and this is 0.5, so what is the width here at 0.5, this is called full width half

max. So, any resonance that you have we will calculate how much is the line width or what is

your full width half max of this system and that is given by your coupling and your lambda

square.

So, your full width half max is given by kappa square lambda square divided by pi L n effective,

so this is full with half max. And the way to calculate this from the measurement is you take it

from the top maximum 50 percentage of it or when you are using a dB scale if this is what your

spectrum is and this is your max, this is 0 dB let us say and you draw a 3 dB line so this is 3 dB

let us say and this is your full width half max or in other words 3 dB line width or bandwidth.

You can also have a scenario where you have the inverse of this, so when you have this again

from the max you do 3 dB down so this should be from here it is 3 dB minus 3 dB in this case so

this is minus 3 dB and this is what we call full width half max or 3 dB. 
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So, in other application we are going to use this full width half max to calculate the q factor what

is called quality factor, so what is quality factor? So, there are two resonances, there is resonance

like this and there is a resonance like this. So, we look at the full width half max of these two, the

one with the lowest full width half max is called a better  quality factor or a much narrower

resonance we have.

So, we use that to find what is called the quality factor q, quality factor q is nothing but lambda

resonance over delta lambda or in other words full width half max here. So, we need to look at

what is this full width half max and at what resonance here, this is lambda resonance and this is

full width half max, if we do that so this is what the quality factor is, the narrower the resonance

the better the Q factor, so that the bottom part goes to smaller values and this is what you get out

of this particular calculation. So, why are we interested in this quality factor? That is because of

the narrow resonance that we always like.

So,  when you look at  the Fabry-Perot  cavities  this  reflect,  when you have higher  reflection

coefficient your resonances have become narrower and narrower that means you only take the

lambda that you want, you want to be very selective in your lambda. So, if you want to do that

you should have higher quality factor, so that is given by this full width half max.

So, you can say full width half max or you can represent it as a quality factor because the quality

factor here also depends on the loss factor that you have, that is a kappa that you have, the



coupling into the structure as well. So, those are all the parameters that you should understand

when we talk about wavelength selective filters.

(Refer Slide Time: 30:04)

So, now let us take a very simple spectral response, so when you take a spectral response of a

filter so I am taking a filter here and then there is one more filter sitting next to it, so the distance

between the two different filters is called the channel spacing there are two channels, so this is

resonance 1 and this is resonance 2, in this case you have two different resonators, so this has r1

and this has r2, so the distance between this is these two are called channel spacing.

And they should be far enough at the same time the resonance should not overlap with each

other. So, by using this you can build very complex filters which is something that we will see in

the case studies but just to give you an idea this is how you can implement multi wavelength

filters or wavelength selective device as a whole.

So,  with that  we have understood how to create  spectral  selectivity,  so in  the  past  we only

handled  power.  So,  now  we  have  a  whole  to  control  the  flow  of  power  as  a  function  of

wavelength now, a certain wavelength could be captured and directed somewhere else. 

So, with that we have completed the whole the passive part of the fundamental elements but then

we will revisit all the components that we discussed theoretically here and then practically we

will see how they respond in our case studies which will be more interesting, because right now

it might just look like relations between different parameters and structures also, but later on we



will see how we realize this and actually how the response would look like, you will be surprised

that it will look near ideal when you look at this interference and also the spectral response of

this wavelength selective devices. With that thank you for listening, see you in our next class.


