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Hello everyone, let us look at mode coupling in a completely practical sense now. So, so far we

looked at what are all the basic that one should understand in order to couple energy from one

mode to another mode, which we will be exploiting throughout our photonic circuit design, so

this is one of the essential foundation should say in guided wave optics in particular photonic

circuits. 

So, let us look at two scenarios, this is something that I briefly mentioned in one of the earlier

lectures, but I will again give you a recap, so when you talk about mode coupling, so that the

understanding  is  there  are  two,  but  you can  also  argue  that  there  could  be  only  one  mode

coupling to itself, it is also possible, where you have a perturbation in the system. So, that is what

we call self-coupling, but in this case, let us take two modes, mode a and mode b. 

So, these two modes are solutions in the waveguide, it could be a single waveguide or this could

be two different waveguide and they are propagating parallel to each other. So, when they are

traveling parallel to each other there are two ways that you could look at this, one they are Co

propagating,  could  be  in  single  waveguide  they  are  Co  propagating  or  in  two  different

waveguides they are Co propagating, that is scenario 1. 

The scenario 2 is they are still parallel,  but they are moving in opposite direction. So, one is

going from right to left, the other one is left to right. So, when this is happens then we call that as

counter propagating waves, but then these two are normal solutions, with the question here is,

what is the coupling condition in order to transfer energy from mode a to mode b when they are

together in same direction or in the opposite direction. 

So, the condition here is there they are there is some perturbation that one could bring in, in order

to couple this,  so there is a kappa is non-zero here, so there is a kappa associated with this

coupling, so we will see what is the nature of this kappa, so let us look at this and understand

how one can couple these two waveguides. So, there are two scenarios as I mentioned, but let us

look at a very simple waveguide system.
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So, if I take a very simple waveguide you would have beta a and then beta b in such a system

you will not have any coupling at all, so these two are Eigen solutions let us say a and b, if they

are Eigen solution you would not be able to couple at all. So, these are all normal solution, we



saw that in the earlier discussion, you need to have some perturbation, so there should be some

disturbance in the system. 

And this disturbance could be brought in by let us say a simple roughness, so here we have a

very smooth surface, but let us say the surface is rough and in that case you create a coupling

between these two, so there should be a coupling between these two waveguides. So, this is

unperturbed and this is perturbed and what we are looking at is co-directional coupling like they

are moving in same direction, so that is what it means. So, this is scenario 1 where we have only

one waveguide. 

So, how about two waveguides, so now this is already a perturbed system we do not have to add

additional perturbation here, so beta a is propagating there and this is beta b, so what we are

looking at is whether we will be able to couple from here this is kappa ab and kappa ba. And

similarly you have kappa ab here. So, what is the requirement in order to make this coupling

happen? 

So, in case of a single wave guide we need to have the perturbation like this the roughness let us

say in  order to enable this  coupling,  but  in a two waveguide system that  perturbation  from,

comes from the proximity itself. So, now let us say the waves are moving in forward direction

and direction here meaning you know is that and they are interacting over some length l, so l is

the length of interaction. 

So, here both betas are positive sign, because they are moving the forward direction and if this is

the case then our coupled equation that we saw earlier as a function of distance, so A tilde here is

nothing but how A, so you can start with A here and as it propagates through the system, so let

me take this as an example, you start as A when z equal to 0, but as it propagates through the

system because of your perturbation it will be you know it will become A til. 

So, that is the A inside or the magnitude or the wave inside this perturb system, so A til over dz

is given by Ii kappa ab again B til e to the power i2 delta z. And similarly for B dB delta over dz

is nothing but i kappa ba A tilde e to the power minus i, so this is our coupled equation. So, A

tilde is the profile of A as it moves along z direction, so we can solve this using a very simple

initial value problem. 
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So, we will look at how one could do this, it is a very simple we can do it as a matrix, what is the

field A and B along z when you are starting point is given by this? So, this is your starting field

and this is field as you move along. So, this is starting field and then this is field along z. So, they

it is coupled by what we call a forward coupling matrix, in forward coupling matrix is given by

something of this kind. So, it is a matrix and this is what we call forward matrix 

So, this is a reasonably a complex matrix might that takes into account the coupling between a b

and ba in a more extensive way, but one thing to notice may now there is no need for us to derive

this forward coupling matrix, but for the moment, let us say that this matrix contains all the

coupling parameters, kappa a as a function of kappa ab and kappa ba. 

So, we want to define a coupling parameter here what is called beta c which is given by root of

kappa ab kappa ba plus delta square. So, this is nothing but kappa square plus delta square is

what we have seen this in a earlier version it is basically beta square equals kappa square plus

delta square is just a conservation equation, so the kappa here is ab and ba, so that just we need

this for further discussion. 
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So, now let  us take a simple case of a waveguide which has some perturbation here, it  is a

perturbed waveguide and we are going to launch only A, so we are going to launch A and this is

z and along the direction this way and this is 0 and this is some z here. So, we are launching only

A here at is the z equal to 0. So, that means you are filled inside the perturbed system A tilde 0 is

not equal to 0. 

So, that means there is a field that you have here, you are launching A, but you are not launching

B, so it is the B when you start with is not present there, so that means there is no power in B at

all, but it is a possible solution, so there is no power in B, but it is a possible solution inside the

waveguide, but we are only launching A here. So, by applying this condition then we can write A

along the length as a function of the starting field and then we need to have the coupling field cos

beta c times z minus i delta over beta c time sin beta c to z whole e to the power i delta z. 

So, we saw this one earlier let me adjust expanding this. So, this is this is how the field is going

to evolve as a function of c. So, you have the starting field inside the perturbed system and your

coupling is going to tell you how much energy that A of z is going to have or how the field A of



z is going to evolve. Similarly, we can do this for B of z, so you start with A field and i kappa ba

divided by Bc sin beta cz e to the power minus i delta z. So, this is how B is going to look like,

as it propagates through the system here. 

So, now we should understand what is the power in these two modes, how the power is going to

vary as a function of z here. So what we have just gotten here is how the profile is going to vary,

but what is the actual power inside. 
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So, this is just a field, so the electric field z k, so we need to know the power in these two modes,

so let us look at how the power is going to change, so power of A at z over power A when you

started, so that is can be given by this, in other terms, in a perturbed system this is your power.

So, we can apply the equation that we had here and that would result in a coupled equation,

kappa ab kappa ba divided by beta c square times Cos squared beta c z plus del square beta c

square. 

So, this is how your power is going to evolve and let us look at for B, so PB z over PB, so this is

again rather simple you start from this mod square it is nothing but kappa ab mod square divided



by beta c square into sin square beta c z. I am not sure whether you are able to see this, let me,

sin square beta cz. So, this is how the power is going to look like. So, how the power evolves as

a function of length? 

So, as a function of length here, when the A wave is moving through this, this is how the power

is going to look like, so this these factors are going to affect your coupling, so let us look at the

coupling efficiency how efficient the coupling between the A and B are going to be. So, what we

just saw is how the power in A and the power in B are going to look like, but now we need to

understand how the coupling is going to look like. So, now we are looking at the actual coupling

efficiency. 
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So, coupling the so far this is actually not the coupling efficiency, you should be careful here, we

are looking at only the individual mode. So, in this case, we are only looking at A, how the A

mode is changing. In the next relation, we are only looking at the B mode, so these are two

modes how the power is going to change only these two we are only looking at, but now we need

to  understand  how  much  power  is  transferred  from A  to  B,  as  a  function  of  length,  how

efficiently we can do that. 

So,  for  a  given length,  this  they are interacting  with each other,  so beta  A beta  B they are

interacting with each other and they are coupled with Ba Bb constant. So, this is only one way let

us say this way, so we are looking at how much we can couple from A to B. So, that coupling

efficiency eta is given by the power that we have in B at a certain length A over power of A

when we started. 

So, we started with let us say A and B, B was not there at all. So, you started only with A, but as

A propagates since kappa ba is not non-equal, it is a finite quantity here as the wave propagates



along the length l, this is just length l, your power is going to coupled into B as well now. So,

that means the power that I had in A is going to reduce and power in B will increase, so you are

splitting the power now and this splitting is mediated by this coupling constant. 

And as you can see, this is a function of length. So, what is the power of B at a certain length A

to the power of A when you started? So, how much power is being coupled is given by this

relationship and we can give this by using this relation that we just saw early or rather I will just

put l, l is the interaction length you saw here, so this is basically how much of power we had. So,

all we have done is added a length to this. 

So, this is the length that is required, so now the power exchanges as you can see here this is a

basically a sin function you see, so the power varies as a function of sin square here, and that

means it is periodic in nature, so the power exchange between the two modes is periodic with

length and that coupling length lc is given by pi over 2 beta c. So, what is beta c? So, beta c is

nothing but the coupling effects so kappa ab kappa ba plus delta square over under root. 

So, this is what you are Bc is, so it gives you an idea about how much coupling one would get as

you propagate through a length lc. So, if you want to have a complete power transfer, this is to

maximum coupling, if you want to have a complete power transfer that means you know from A

to B, there is 100 percentage power is transferred from A to B, so there is no power left in a A,

all the power is dumped into mode B. If you want to do that, then you are delta here, so delta is

nothing but our phase difference, so it should be equal to 0. 
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So,  a  complete  power transfer  can occur  only in  a  phase  match  condition.  So,  what  is  that

condition? That condition is delta should be equal to 0, so when you have 0, then you have

perfect phase matching and you will get all the power coupling from one waveguide to the other,

one mode to the other mode, let us look at how that will happen. So, you can numerically do that

based on the equation we have, but let  me show you here qualitatively how you this  would

happen. 

So, let us say this is a function of length and this is for del equals to 0, so this is the power

exchange let us say this is the power. So, let me take two colours here, so blue colour is for A

and red is for B, so here blue gives you the A coupling, so that means used when the length is 0



so you go from 0 to a certain length when there is a length is 0 then all the power is in A, so all

the power is in A, but then they start oscillating it starts oscillating and at a certain length lc we

saw here, at this particular length lc you have maximum power coupling, that means at delta

equals to 0. So, this is the condition we are looking at here. 

So, this is at lc and then the next high will happen at 3 lc and 5 lc and so on, so odd multiples of

lc you will get power low. So, now how is the power going to look like at B? So, when you start

with B is 0, so there is no power in B, but then as it propagates you will see that this is for B, so

B gets maximum power when it is lc and it gets lowest power at 2 lc so if you just to visualize I

take a waveguide or even in this case I can take two waveguides both arguments are right, so I

only launch A here this is waveguide 1 and waveguide 2, so waveguide 1 and waveguide 2. 

So, I have A but I want to couple to B, so when I start with I only launch A, so I only launch A

here, so there is no B there, but then this is as a function of length, so when the length is lc all the

power is now in B, so that means light is now completely of let us say let me draw a line here

this is lc and then you have 2 lc and that is a 3 lc. So, I launched it in the upper waveguide, now

when it is lc, then all the power will be now in B. So, and then when it goes to 2 lc the power

comes back to A and then as it propagates it is going to be like this. 

So, it will switch from one waveguide to the other, so in between you will have other powers, so

here you have 50 percentage of the power 0.5 here and here is 1 a complete power transfer

happens here when it is 50. And if you are going to if you want to split the power between two

different waveguides here, if it  is a power splitter,  you want to split  between these two you

should choose 0.5. lc or lc by 2, if you take lc by 2, so that is what here if you take lc by 2 you

can split the power between these two waveguides now. So, as the wave propagates you will

have points where the light will be sitting on both the waveguides. 

So, that position is called the splitting position where you have 50-50 power between these two

and when you reach lc or 3 lc, then the whole power is transferred. In this case, if it is 2 lc it will

go back to your original waveguide. So, this complete power transfer 100 percentage transfer

you can see here from going from 1 to 0 will happen when delta is equal to 0, so delta equal to 0

means you should be able to get that. But in practical scenario, you may not be able to get this

perfect phase matching. So, perfect phase matching may not be possible. 



In that case you will have a scenario where your delta is not equal to 0, in this case it is not equal

to 0, so let us say delta is something like 1.2, let us say and again this is power and this is as a

function of length, let us take the same scenario here, we have lc, 2 lc and let us say 3 lc, the

same thing that we saw here as well. So, now how the power is going to be distributed, again A

is blue now and B is your red curve here. 

So,  when I  start  Ba is  1,  so A is  1 that  is  a maximum power we start  with,  but then as it

propagates through instead of going to 0 they will oscillate between these dates, let me draw it

again, so it is not going to go to a complete power transfer, that means it should be 0, if I draw B

it will be very clear for you, so this is your B and B is going to do this, you can see here, so this

is our 0.5 and this is our 0. So, the maximum is here 1, so when you have delta, which is non-

zero, then it is impossible to do complete power transfer. 

So, you will only do partial power transfer, in some of the cases this is still useful, but the only

thing is you would not be having the complete axis of power that you can transfer from one

waveguide to the other wave guide. So, when the phase matching is not proper, so what you see

here is nothing but d let me draw this in blue, so PA z over PA naught and here PB z over PA

naught, so this is what we have seen here. 

The same thing is through here as well. So, how the power is to look like, so PA z over PA0 PB

z over PA0, so that is the red and this is the blue one. So, the power transfer now happens as a

periodic function as you move along the length of the device and we use this concept to design

one of the device just called a directional coupler, we will look at it briefly when we talk about

passive waveguide structure,  but that the power distribution works with this code directional

coupling mechanism. So, co-directional is all fine we understand it reasonably well now. 
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So,  let  us  look at  counter  directional  propagation,  counter  directional  coupling,  so  here  the

scenario is different, let me take you back to this cartoon where we saw the waves are moving

forward in a single waveguide and also in the stew waveguide system. So, in both the cases, we

have  waves  that  are  parallel  but  they  are  moving  in  same  direction,  but  here  in  counter

directional or counter propagation we are going to have it in opposite direction. 

So, let us look at a perturbed waveguide that we have, so beta a is going to do forward, but now

beta b is backward, so we are looking at kappa ba here. Similarly, if you take a two waveguide

system here we are having beta a and here we are having beta b, so now the question is, how



much is your kappa ba and how much is your kappa ab? So, you have all these perturbation that

we have in this system in order to do this coupling. 

So, because the coupling has to happen, we said there should be a perturbation, but in case of

counter-propagating  coupling,  counter-propagating  wave coupling  the  perturbation  has  to  be

severe, so even in this case when you talk about simple waveguide two waveguide system you

should have reasonable perturbation both here and also here. So, one of the requirement is severe

perturbation, you can also say it is a significant perturbation that you need in order to make this

happen. 

We will see why we want this perturbation to be very strong, in the in the earlier case in the co

propagating case we did not say the perturbation has to be severe we just said there should be

perturbation,  but in this  case there should be very severe perturbation in a single waveguide

system and also in the double waveguide system. So, now we can go back in and write our

couple equation here. But one thing that we should again keep in mind is the sin of beta, so your

beta a will  be positive and your beta b will be negative,  so it is propagating in the opposite

direction and that is why we put this convention of positive and negative. So, now the coupled

equation, let us look at the coupled equation. 
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So, the coupled equation here would look like this, it is the same thing what we saw earlier, i

kappa ab B e to the power i 2 del z and then d dz, so since it is moving in opposite direction, we

need to put a negative sign here, kappa ba A e to the power minus i 2 del z. So, the equation for

the counter direction coupling are again could be solved using boundary value problem with the

following values that you start with A tilde at 0, you start with this waveguide at one end and you

have B tilde l at the other end. 

And we can find value of A tilde z and B tilde somewhere, in any location between the two ends.

So, this is the length that we had, so in this case we are launching A naught and then look and

also on the B from bl, so they are they could be propagating from both the ends. Let us look at

our coupling matrix now. 
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So, the general coupling that we saw it is rather same, but the only thing is we talked about

forward coupling, so A0 here and B of l here, so instead of forward coupling we have reverse

coupling, so from 0 and l, so this is this is called our reverse coupling matrix, here again we had

this beta c, so in this case we call it as alpha c, so alpha coupling is nothing but root of kappa ab

kappa ba minus del square, so this is the conservation equation that we already know. 

So, now let us consider the scenario of launching one of the modes and then look at how it will

coupling at the other end or how it is going to couple to the other mode in this case. So, now

again we will look at a single waveguide system, so there is along and it is a certain length l, so I

am launching the mode from one end which is propagating in this direction and now I am not

launching anything here from this end it is 0 but then the solution exists from this side. So, now

the question is in the middle, how are they going to (())(39:13) so this is not equal to 0 and this is

equal to 0. So, now let us write the field equation for A and B in some arbitrary position.
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So, A of z will be equal to A tilde 0, so here it is going to be little complex, but just stay with me

l times z that is i delta sin h alpha c l minus z the whole thing divided by alpha c cos h alpha c l

plus i delta sin h alpha c l times e to the power of i delta z. And the other thing is Bz can be

written as A naught i times kappa ba sin h hyperbolic sin alpha c l minus z whole divided by

alpha c hyperbolic cos alpha c l plus i delta sin h hyperbolic sin e to the power minus i delta c. 

So, this is how the field is going to look like, as I progresses through the waveguide here. So,

now we know that field but we have to understand how the power is going to be distributed, we

will follow the same convention,  the only thing here is between co-propagating and counter-

propagating is the for the counter-propagating the relations are a little bit complex, so that we

saw in the field. So, let us look at how the power coupling is going to happen. 

So, power a along with z as a function when you started is nothing but A which is nothing but

hyperbolic cos square alpha cl minus delta square by kappa ab kappa ba the whole divided by

hyperbolic cos alpha cl minus del square by kappa ab kappa ba. So, this is how your field is

going to look for A. 

(Refer Slide Time: 42:23)



And for B in just given by kappa ba by kappa ba Sin h square alpha c l minus c whole divide by

del square K ab K ba. So, this is what we have, when we do our coupling to one mode to the

other  mode.  So,  this  is  how  the  power  coupling  happen.  So,  you  can  see  here  it  is  not

straightforward,  like we bought what we had for the co-propagating case, it  is hyperbolic in

nature, but then the efficiency will also be of that nature. 

So, this is coupling efficiency. So, your coupling efficiency is going to be PB or PA which is

nothing but kappa ba star kappa ab sin hyperbolic square times l, but then you can change this

instead of having this you could place this as l, so we can just do this l. So, this is actual coupling

efficiency in a counter-propagating wave, because B is propagating backwards with no input at is

e z equal to l. 

So, when e z in this case, so at set in length l, so there is no input, it is going from moving from

A naught to Bz, so that is that is what we are trying to find out, so how much power will be

coupled to that mode. So, what is the condition for complete power transfer? That means the

power from A is dumped into b, so what is that condition? 

So, that condition depends on the length as we saw earlier, so one thing that you may also want

to  notice  here  is  the  power  coupling  itself  so  the  efficiency  calculation  itself  look  at  this

carefully, so PB naught over PA naught you are looking at the entry point, so you are looking at

where z equals 0, so when you look at the other coupling efficiency that is the co-propagating

efficiency let me show you that, so there we looked at PB at l compared to PA 0, so that means

when you the starting point of your waveguide, so how much power is transferred to B at a

certain length l? 

But in this case we are looking at how much power is transferred from A to B at the initial

position itself, because they are moving in opposite direction, so you are looking at how much

power will be coupled from A to B when it reaches the initial position, so that is a coupling

efficiency difference here. So, just keep that in mind, so condition for complete power sense

were that is what we want, so when can we completely transfer the power? 



So, complete power transfer will happen when l tends to infinity that is the only way, if del

squire is less than kappa ab kappa ba, so that is the condition we should use for, let me write it

here, if del square is less than kappa ab kappa ba, so this is the condition with which you can

have complete power transfer, so complete power transferred could happen when you have this

one.  So,  similar  to go propagation  let  us look at  how the coupling is  going to  happen as a

function of length. So, we talked about length l where you would have complete power transfer. 
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So, let us look at power coupling, qualitatively here as a function of l, so this is l and this is l by 2

let us say and this is when delta is 0 and you start from 1 and this is 0.5, so I will pick up again A

and B, so the power exchange between the counter directional coupling modes would look in a

like a decay functions it is a hyperbolic here, so you start from 1 and what you will see is just the

k down and the go like this and for B also you will have the same thing.

But now when you have a condition where your delta in this case also we will take something

like 1.2 or that we saw it is not 0 that is what we want to do. In this case again the power will not

change much, so it is going to be exactly the same with very small difference, where your A we

will see something like this while your B we will see a much dipper, so this is all you will get.

So, what is A? A is nothing your blue is nothing but da PA z over PA0 and your blue red curve is

PBz over PA0, so, this is how the power coupling is going to be. 

So, you can you can clearly see that the implication of having the counter propagating wave here,

so you will get maximum coupling only at infinity, but why are we actually looking at this? I

mean this is as complex as it gets when it comes to couple mode theory the counter propagating

wave coupling is rather difficult to transfer energy which leads severe perturbation and so on, but

if you look at the problem, it is it is very practical we see it all the time, we see this all the time,

where do we see this? 



This is nothing but reflection, one could perceive this as a reflection of the A naught, so you have

a forward propagating  wave that  is  beta  a and then beta b let  us say it  is  nothing but  your

reflection of what you see here. So, this will be an interesting way to look at it, it is nothing but

reflection, so if that is the case, can we write the reflection coefficient of this? 
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So, the reflection you can see this as a reflection, let us say your reflection coefficient r, so this is

reflection coefficient that nothing but r e to the power of i phi, some phase difference is what you

see. And this is nothing but B naught with respect to A naught, so this is what reflection is all

about. How much power you get at a for power that you put in B in whatever power you put in

A. And that is nothing but i kappa ba which we saw sin h hyperbolic alpha c l divided by alpha c

cos h alpha cl plus i delta sin h alpha at alpha c times l. 



So, this gives you the reflectivity, that is nothing but reflectivity so the reflectivity reflection

coefficient and reflectivity is nothing but square or another case eta, so this is the reflectivity

what you get, so let us say what is the phase shift that you may get and that phase shift is given

by whatever from the reflection side and then the propagation tan inverse of delta alpha c and

both alpha c times l. 

So, this is how you know you can find the reflectivity if the phase shift that you may have when

you are considering this counter-propagating coupling, so it is not that you know they do not

exist, they do exist these counter-propagating coupling is similar to the reflection problem that

we  have  and  we  can  indeed  a  couple  backward  propagating  waves  by  using  very  strong

perturbation as we as we discussed here. 

So, we want to have a very severe perturbation by doing that one should be able to couple it and

people have shown this this is not just in theory people have fabricated these kind of devices in

order to show that how one could couple to counter direct propagating modes. A good example

here is a very simple gratings a black grating let us say, so you which we will see later on, while

using  this  concept  how  light  could  be  coupled  back  and  forth  in  this  using  this  counter

propagation coupling. 

And we use this concept for making lasers, so distributed back reflectors is a concept that we use

to make lasers on chip lasers and they rely on this sort of coupling. So, it may look complex but

it is very practical, so we use this in order to exploit again properties in the medium. So, let us

look at summarize this with important phase matching conditions, I think for the moment we will

stop with this understanding of Co and counter-propagating waves. 

So, far we looked at these two waves how they could couple and also derived the nature of

power coupling as they propagate through the waveguide. And one can use put this into use in

practical devices which we will see in the passive device section. So, make sure that you revise

these topics, it needs some time, you would not be able to just digest from just looking through

this video relook, re-look at  it,  stop whenever you need, work it  out so that you completely

absorb this this concept of coupling, which is very very important when you are designing really

complex devices with that thank you very much for listening.


