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Waveguide Design-BVP Solution

Hello,  welcome  back  to  this  discussion  on  waveguide  design.  In  the  last  lecture,  we  just

formulated the boundary value problem. So, we have just set the stage with, the different regions

that we have in a rectangular waveguide. So, now, how are we going to solve this and find out

the necessary parameters, out of this whole solution, including, the type of profile that we are

going to have and also importantly, the propagation constant of a particular mode. 

So,  let  us  just  start  with understanding how this  mode profile  was.  So,  we discussed about

oscillating  and  decaying  solutions.  So,  let  us  look  at  how we can  represent  this  mode  and

following that discussion, we will look at the solution to this boundary value problem. So, let us

start with how the solution or the field would look like.

(Refer Slide Time: 01:37)

So, this is this is where we, we left in the last lecture. So, there are different regions that you can,

use, we can define with, with both oscillating and decaying solution. So, let us look at how this,

this solution is going to look like. 



(Refer Slide Time: 01:58)

So,  for example,  you take  a  simple waveguide system like this.  So,  now, when we say the

electric field, so the electric field has this fundamental mode, that is the first order or first normal

mode, that is the zeroth order mode. So, how will the zeroeth order mode looked like, something

like this.  So,  we have seen that  in our 10,  planar  waveguide geometry.  So,  when there is  a

electric field 00, so, x and y, along x and y. 

So, we know this is a y and this is x, so, the field would look like this. So, you have 0 here, so,

that means you will have like this, and along y direction, it will also be like this. So, this is E 00.

So, now, let us look at E 12 let us say. So, this is different, let me, let us make it a little easy, let



us make it 01. Because 12 is going to be a little crazy drawing it here. So, 01 so, along, again, let

us put the directions here, this is, this is y and this is x. 

So, along x direction you have 0 nodes. So, that means your field will be like this. So, along y

direction you have one crossing, so that means you will have, so this is our E 01. So, this is our E

01 mod, where in y along x direction we have 0 crossing, so that is your 0 and this 1. 

(Refer Slide Time: 04:38)

 

So now, just last bit, to make things a bit more fun. Let us say E11. So, if you have E11, so that

means you should have one node crossing for both x and y. So, that means you will have,  here

and here as well. So, x and y will have both here and here. So, now, let us look at, this is both an

x and y direction, but then you have to put this together, in order to have the intensity profile, or

the electric field combined E x and E y. How would that look like?

So, let us look at E 00, now. So, when you take E 00, it will just look like one single blob,

because it has no crossing, it is just a Gaussian distribution. So, you have Gaussian both in x and

y, if you put together it will be a three dimensional Gaussian as you see here. So, this is how it

will look like. But then if you look at 01 this is going to be little tricky, along the x direction so,

there is no crossing at all, but then along y direction we see a crossing. 

So, that means, let us, let us put the axis here, so this is y and x. So, here y and x. So, here we

will have two blobs. So, this is how it will be. So, when you move along x you will not see any



crossing. So, there is no crossing. So, when you look at the, along y you will have a positive,

negative if you want to call it. So, this is the field up and this is field down. So, positive and

negative. 

So, let us look at E 11 this is more interesting. So, you have one crossing in x and one crossing in

y. So, how can we look at this? So, we know how the single crossing is going to be, in this case

you will have 1, 2, 3, 4. So, you will have four crossing, so, when you move across y, you, you

see a crossing here, I drew it too far. So, you will have one crossing, when you move from, along

x you will also see one crossing. 

So, this is how you could characterize your modes. So, how the energy is going to be distributed.

So, without understanding, let us move into solving this, we want to find what our propagation

constants are going to be. So, let us look at that now. 
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So, what we need to do, is to, to complete the solution we must first determine. So, this is, the

solution to the boundary value problem now. So, what we need? We need, we need to find k x, k

y, and beta. So, these are all the things we need. So, we need to use the boundary conditions,

connecting different regions. So, it is, that is why it is called boundary value problem. So, let us

look at the system that we have in hand right now. 

So, we have taken this very simple rectangle, let us say. So, it has a certain width b, and it has a

certain height a. Now inside this you have field propagating. So, let us put both E and H field

here. So, I can make, this is our H field along y and we have E field along x. So, this is, this is

our field. So, now, in this particular waveguide that we have, we need to look at the boundary

condition. 

So, we must make sure that there is a continuity in the elect, the tangential electric field at y

equals to 0. So, you have this is y and this is x. So, we should make sure that we have continuity

here. Both at,  at y equals 0 and also y equals b. So, we need to have, so let me write those



continuity, all you need to make sure is the tangential component of Ex. So, Ex is continuous

here and also here. So, that continuity one should maintain. 

So, that is, that is one thing and again for Hy field, we should have the magnetic field continuous

at x is equal to 0 and x equal to minus, minus a. So, this is minus a and this is 0 and this is b. So,

let  us  put  those  conditions  here.  So,  so,  we  should  make  sure  that  tangential  field  Ex  is

continuous at y equals to 0 and y equals to b. So, we should make sure that this thing happened.

Similarly,  we should have tangential  magnetic component,  is continuous at x equals 0 and x

equal to minus a. So, this is, this is something that we, know from our basic electro magnetics.

So,  if  you  want  the  energy  to  be  transmitted  through these  two  media,  then  the  tangential

component  of  E  and  H should  be  continuous  in  these  boundaries.  And  the  other  boundary

condition is, automatically taken care and we should also look at the continuity of d and b as

well. So, we are just naturally done here. 

So, if you look at the E field here, so, Ex field looks like a TE more in a slab waveguide. So,

there are two things you can look at. So, let, let us just spend some time in looking at this. So,

there are two, two ways to look at it.  So, one is a thin slab of thickness b or a thin slab of

thickness a. So, these are all two possibilities. So, when you take a thin slab of thickness b, then,

your  electric  field  would  look like  a  TE mode with  thickness  b.  So,  this  is  looking in  this

direction.  So, you will  see your  Ex field is  like this.  So,  it  will  be a  TE mode with a  slab

thickness of b. 

But similarly, for the other case, it will look like the thickness is here then what you will have is

a tm wave.  So, your, your tm mode in a slab of thickness a. So, there is two different ways of

looking at it, you can take it and decompose it into x and y and based on their alignment, you can

use our simple planar waveguide understanding here. So, one can do that. So, all we are trying to

do is trying to understand from our earlier you know understanding of info. So, this is where

market ally as proposed like what should be your kx and ky in this case, we are going to directly

pick up from what Marcetale has actually proposed and given as a final equation. 

So, that is the characteristic equation for ky. So, for ky, he has given something like this ky b

which is equal to ky gamma 4 gamma 5 divided by ky squared minus gamma 4 gamma 5. So,

this is, this is identical to what we have seen as a characteristic equation of TE more in a slab



waveguide.  So,  this  is  characteristic  equation  of  that.  So,  we  can  use  a  similar  tangential

component for h y that involves the interface x and y. 

So,  you remember this  for h y, we should have a continuity here when x is  equal  to 0 and

continuity at x is equal to minus a. So, if you use that and then use this at the boundary for,

boundary 2 and boundary 3. So, that is the two other boundaries that we have, then we come up

with this characteristic equation for kx. So, for kx, it  will be tan kx a, which is given us n1

squared, let me write it a little below and kx a is nothing but n1 squared, kx into squared gamma

3 minus n3 squared gamma 2 divided by n2 squared n3 square kx minus n1 to the power of 4

gamma 2 and gamma. So, this is again characteristic equation for tm mode in a slab waveguide

of thickness B. So, I will just mark it here, this is nothing but TE mode in slab. 

(Refer Slide Time: 16:23)

So, this is similar to that and in this case, this is TM mode in slap of thickness b, let us say. So,

you can have these two nicely, done for both kx and ky, which would, which would completely

describe the mode field. And you could use this for the other regions as well. So, 4 and 5 as well.

So, by using that you can come up with this detailed, field distribution on this individual mode, it



will be too much to have it here. So, what we are going to do is, we will put it up in, in the note

section that you could a have a look at.



(Refer Slide Time: 17:22)

So, now, the phase terms. So, now we have kx and ky, but then we also have the phi term here.

So, that is, let me go back and then show you where this is, this is important. So, if we look at



this equation, so we have this kx, ky so, that is something that we had, we have just found out

what is the relation we can do, but then what about phi here. 

So, we have phi x and phi y, so that is the phase component inside this each boundary. So, that is

given by, the following equation. So, tan phi x is nothing but n, at least, in this case n3 squared

by n1 squared times k x y comma 3. So, this is for region 3 and 5. So, next thing is for phi and

phi  y  is  nothing  but  minus  gamma phi  divided  by ky.  So,  you know,  we can  see  that  the

rectangular modes, is a simple product of two orthogonal spatial modes. So, that is what, we

have seen so far. 

So, the x dependence of the mode is found by solving it as a slab, here. So, the x dependent is

solved, is solved by considering it a slab. If there are no structures, there are no structures in the

y direction similarly, y dependency of mode can be, treated by considering the waveguide as a

slab  with  infinite,  x  direction.  So,  we  are  just  converting  this  two  dimensional  structure,

confinement both in x y as to slab thing. So, we had a slab like this and we had a slab like that. 

So, this, this was a and this was b. So, we had this Ex in this direction, telling you that it is like,

TE mod with thickness a. And in this case, we had the other way around. So, this is hy, and here

it is Ex with a, a thickness of b. So, both are TE mode, TE, TE in, in slab. So, here again TE in

slab. The only thing is your thickness is b here, here the thickness is a. So, you just oriented it in

this two way. 

So, we do not have to really, push too much here. So, we can still take this and, and continue

solving. So, similar to what we have done for this, the slab waveguides, so the two solutions are

coupled now, with the propagation constant beta now, that is what we see, where your kx and ky

are nothing but the transverse component. So, let me quickly draw that particular vector diagram

here, the three propagating vectors that we all know of.

(Refer Slide Time: 21:12)



So, this is your propagation direction z let us say, and let us say this is x and say this is y. So,

when the wave is propagating, you will have a beta here. So, this is where it is propagating

through, we will have an x component. So, we will have an x component here that is kx, over

getting through and it will also have ay component. So, you will have y component parallel to y

and that is where we have our propagation vector k0 n1. So, this is in a three dimensional space

that one could consider. So, this you could use to visualize how things are so, we need beta and

then kx and ky should be, we should be able to get, get this thing done. 

So, similar to what we have done for the slab waveguide and, and other fibers and other things,

one can use the normalized parameter here the propagation constant b to the normalized index b

to your normalized frequency v. So, v is our normalized frequency, that we know which we

already know, let us say n1 squared minus n2 square so, this is something that we, we already

know. So, for smaller dimension, where a is reasonably small,  n1 here is this core refractive

index and n2 is your cladding refractive index let us say. 

So, you could plot v versus b. So, if we plot v versus b, we should be able to find the propagation

constant of this. But it is not easy to plot this for, all kinds of geometry. You need to start from

somewhere because it has a certain width and it has a certain height. In this case we only have a



to it, but in our case we have a certain width and we have a certain breadth in this case, depth and

width  is  what  we  have.  In  this  case,  what  we  need  to  do  is  we  have  to  do  some  sort  of

approximation. So, the mode that we consider here, we need to look at how these modes evolve,

as if, as an approximation and try to arrive at the exact solution. 
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For example, if we are going to plot this b versus v, and again I will write here b to remind you

all this is something we already saw, but again in, you may not remember right away. So, I will

write it here. So, this is our v versus, v and b. So, one could write b with a function of b. So, b is

nothing but norm, normalized propagation. Normalized propagation constant, and this is, this is

normalized frequency here. So, now, if we plot this, normalized frequency, let us say this is your

v parameter and this is your b, you will find something interesting. 

So,  what  you are going to  find  is  that  your,  your  curve  your  propagation,  your  normalized

propagation will have negative values. So, you will, you will see some negative values. So, your

b you can, can directly calculate beta from here. So, it, this is not possible, in reality. So, the

values that you see here that are negative, it is just not physical to have b negative, when you are

considering this structure. You may remember that we have, we discussed about, direction of b

whether it is positive or negative, it will tell you whether it is forward propagating or backward

propagating. 

So, backward propagating we put negative and forward propagating we put positive, but this is

whatever we see here it is not physical at all. So, you cannot have sudden change in the direction

as you change just the, the refractive index let us say, or the dimension, suddenly by changing

the dimension you will not make the, make the wave move forward or backwards. So, that the

direction of energy flow will not change, but this particularly happens for case, for a certain v. 



So, when for example,  when the v number is less than a certain value, you will  not, have a

feasible solution, you are, you see unphysical or non physical propagation constant. So, this is,

this is not, not good for us, because below a certain v this particular technique is not giving us

the right kind of solution. So, what to do? Because of this uncertainty, we need to think about

ways of improving this approach. So, you want everything to be positive. So, that is what we

want and in order to do that particularly, when you have a near cutoff conditions. 

So,  it  becomes really  uncertain.  So,  that  is  not  feasible  and the other  thing  here  is  for  any

symmetric waveguide, so for a symmetric waveguide, where we have n1 n2, in this case, you

have everything covered similar, refractive index, I should actually do this. So, it is completely

filled with n2 and it is symmetric in nature. And if it is symmetric in nature, you, you expect the

waveguide to have, at least one guiding mode, same as what we saw in the 10 form. 

So,  there should be at  least  one guiding mode,  but unfortunately,  this  negative  number,  the

propagation constant is not giving us the confidence that whether the solution that we have here,

is, is feasible at all or not. So, this is where we look at, beyond a simple analytical approach that

we had so far. So, we need to look at some perturbation approach let us say to correct for this,

beta that is being negative here. 

So, so far, we looked at how to approach this, this boundary value problem to achieve or to

determine, kx ky and beta. But unfortunately, when you look at the beta, we are getting negative

values of beta, which is not physical at all, for a given structure. So, we need to find a way to

solve this problem, but this problem only exists when you are talking, when you are considering

structures that are very close to the cutoff here. So, when the waveguides are pretty large and the

refractive index is reasonably low contrast between n1 and n2, then this problem will not erase. 

But then when you are having dimensions that are smaller, when the dimensions are reduced,

and also when the refractive index is high, refractive index contrast is high to be precise, then

we, we find this problem of, non physical beta values. And this is one of the reasons why solving

high refractive index waveguides are not easy to be done with, with analytical methods, you need

to do with numerical  techniques.  So,  a simple waveguide will  be,  will  be very hard or it  is

impossible to do it because of the negative beta that we see. 



However, one can use, some polished approach. So, one that is already being explored and used

is called perturb, perturbed approach or perturbation approach. So, where instead of just trying to

find this, this beta that you want, you can start with a certain beta. So, you say, you start with

some best guess beta. You start with that best guess beta and then try to approach to the, the

exact solution. And that is done along with the field overlap and, and field expansion as well. So,

that is something we will see in the next lecture. Thank you very much for your listening.


