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Hello  everyone.  In  this  lecture  let  us  look  at  how  to  design  photonic  integrated

waveguide. So, we have looked at waveguide properties in various aspects and various

configurations.  The  fundamental  or  it  is  a  very  basic  waveguide  structure  is  a  slab

waveguide. So, we looked at a sandwich of layers. So, we have a core waveguide and

then surrounded by a lower refractive index medium which is called cladding.

So,  we  looked  at  an  infinitely  thin  waveguide.  So,  that  means  the  light  is  confined

vertically  by  index  contrast  and  laterally  it  extends.  So,  we  have  a  pretty  good

understanding of that but in practice we do not use this kind of slab waveguide. We use a

rectangular  type of waveguide.  So, that means you have both x and y. So, you have

boundary both in x and y. So, the confinement in the vertical direction is by the index

contrast we have, and also in the transverse direction you also have index confinement.

So, in this case how do we understand light propagation? So, so far we had the z axis

along the z axis how the light propagates, but now we are going to turn it and then say is

the z axis it inside or outside the screen but then you have x y region to try to understand

how the light or the field is going to be there. So, we already looked at how the field

profile would look like and we also understood the propagation constant associated with

the transverse and the longitudinal direction, but now everything is going to change.

So,  now we are going to  look into both x and y aspects.  So,  we made our  problem

reasonably simple in the earlier lectures by having y axis infinite, so there is no boundary.

So, now we are going to put a boundary to x and y so when you put a boundary how are

we going to understand this and more importantly, this is the fundamental structure that

we use in integrated optics. 

In all the circuits we will have some sort of rectangular structure, not just in photonic ICs,

but also semiconductor lasers, for example. So, the light confinement in semiconductor



lasers  is  through  this  two-dimensional  confinement.  So,  you  have  vertical  x  and

horizontal y, you know the other way around as well, but you have confinement both in x

and y directions so that means there is a boundary there. 

So,  it  is  important  for  us  to  understand  how  one  can  define  the  conditions,  the

propagation conditions, and also the field profile. So, how my electric field is going to

look along x and how my electric field is going to look along y. So, if you remember in

the guided-wave discussion we took doh e or doh h over doh y to be 0. Because there is

no boundary at all so y axis is nothing to say but in this case that is not going to be. So,

here there is a boundary there so the tangential component of e field and h field there

should be a continuity boundary condition now.

So, those are all the new addition that you have to consider when you are talking about

two-dimensional structure now. So, this was earlier considered to be a very hard problem

to solve, it is still not trivial to solve for this field in a rectangular geometry. It is not

trivial at all if you want to do it in analytical sense, but there are some approximations

you can do. You can take this two-dimensional case and make it one-dimensional so you

can flatten along x or flatten along y in order to make this problem reasonably easy to

attempt.

So, the pioneering work was done by Mercantile  so he come came up with ways of

looking  at  this  two-dimensional  structure  and  how  one  can  define  the  boundary

conditions  because  the problem here  is  the boundary  condition.  When you have  two

interfaces, you do not have any problem, it is nicely defined, but then the moment you

put another interface it becomes tricky. So, you might be wondering what is tricky about

it. We will see that in a minute. Let us look at integrated optical waveguide design now.

Let us jump into it.
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So, any rectangular waveguide, so we saw in the introductory classes the different type of

waveguides so we could have a very simple, let us say something like a buried waveguide

like this so there is n1 and there is n2. This is one type of structure and the other type of

structure is completely buried where this is n1, this is n2 and you could have another type

of structure where you could have n1 and n2. There is one more where you could have

something like this, so n1 in all cases is greater than n2. So, these are all different types

of rectangular waveguides. These are all different types of rectangular waveguides. 

So, what is very difficult about these structures? So, I mentioned something about the

boundary condition. So, boundary condition for these waveguides are not that clear, it is

coupled, why is that? That is what we want to understand here. So, before that everything

is now in two-dimension you see here so we have y and we have x. Because we have a

boundary in y now the field would also be similar. So, you will have a field along x and a

field along y. 

So, this how our field is going to be so that means that you need to find a solution along x

direction and solution along y direction. So, you need to have this in mind. And now let

us look at  what  is  tricky about  this  particular  structure.  Let  us  look at  an embedded

structure which is much easier to look at.
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So, I can take a waveguide like this as a certain refractive index and now if I want to

dissociate into different components so let me say this is y axis and this is x axis. So, if I

look  at  this  then  what  I  see  here  is  I  can  have  region  n1,  I  could  have  multiple

possibilities here, and I could have n2 here and that could be n3, it could be n4 and n5.

So, these are all  the different regions or different boundaries that we should consider

when solving for a waveguide here. 

So, if you consider this as my rectangular waveguide but then if you want to put the

boundary condition, now we have multiple domains here along the x and along y. So, the

problem here is between, if you look at the region n1, n2 and n3, these are all reasonably

easy to define the boundary condition. It is straightforward because they resemble the

thin planar waveguide geometry similarly n5 and n4 as well so, their boundary conditions

are nicely defined but how about the corners? 

These corner regions, this region, this region, this region and this region. So, here things

become very difficult to define. Why is that, because there in all these four regions, x and

y are coupled now. So, you cannot write the boundary condition just for x or y. So, x and

y are dependent so the solution will also be x and y dependent. So, this is where the

problem gets really interesting and the other important thing to notice here is we have x



and y. Because you have x and y, the way we designate any field would also be a little

different. 

For example, if you have TE mode, so you have an electric field E so it is along y and it

will  have the  mode number m and n,  for example.  So,  this  is  one mode where it  is

confined along y direction.  This  is  TE mode,  so you have electric  field along this  y

direction and you could also have x along m and n. In this case it is parallel to x axis. So,

these are all different notations that we use to designate various fields that you have in

this particular rectangular geometry. 

So, this is a little different from what we saw in the slab waveguide. So, in order to solve

for this you need to find, formulate a boundary value problem. So, this is something that

is  reasonably  straightforward  to  do,  the  formulation,  at  least  here so we look at  this

waveguide and say, so, if you want to have a solution to this, then probably that particular

wave  should  propagate  through  this  with  a  certain  eigenvalue  that  is  beta  for  that

particular solution and you want this solution to be much above the cutoff.

So, we saw the cutoff condition in our slab waveguides. So, you want this waveguide to

propagate this mode to propagate through this waveguide so it should be greater than the

cutoff. So, let us look at, right now let us ignore the corners. So, we will ignore these

corners and we will only consider the uncoupled ones. So, there is no coupling between

the x, y, and z components let us say and if that is the case then we can write the wave

equation as a scalar form
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And if psi is your wave, you could write something like 

So, this is your scalar wave equation. So, we are writing this because it is uncoupled, let

us say there is no coupling in x, y, and z and in this case k naught is nothing but free

space wave vector and beta is the propagation constant. But we still do not know what

this propagation constant is? It has a certain propagation constant. You do not know what

it is because that is what we want to find out and n x comma y is nothing but refractive

index. 

So, this is similar to what we have seen earlier so there is nothing new in it but this is

where we have to start this so we need to start everything with this wave equation. So,

now let us look at the solution itself so the psi is the propagating wave here so what could

be the solution to this? The solution for this will be as a function of x and y. So, it is

rather straightforward to do that is something that we saw earlier, you can do it x of x, y

of y where this x of x is nothing but amplitude distribution along x. 



And similarly y is amplitude distribution along y so similarly this one is amplitude along

y direction. So, this is very straightforward because this is how we see the solution and

here again, the solution here, particularly let us say in this particular guided region, this n

1.  So, n1 is  where you have the light  propagating.  There you will  have a  sinusoidal

solution. So, you will have sinusoidal solution wherever light is propagating and outside

it should have a decaying solution. So, you want to have that sinusoidal solution in n1 but

in n2 and n3 regions, you should have a decaying solution let us say for the light that is

oriented along x direction.
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Now your field? So, your general form of the solution, so general form of the solution, 

So, this is something we have also seen earlier so kxi, kyi depends on which region you

are. So, when you take this region 1, 2, 3, 4 and 5, so in this case it will be k x1 and k y1,

here it will be k x4, k y4, similarly here k x3, and k y3. So, based on the region that you

are. So, this k x i and k y i are nothing but propagation constant in respective regions, 1 to

5. So, this is something that one can take.

So, now the propagation constant along x would be k x1, k x4 and k x5 when you take 1,

4 and 5. And this propagation constant should be identical and independent of y. So, if

you are taking along x so your k xi; k x1, k x4 and k x5 so this in region 1, 4 and 5. So,

this must be identical, this all should be identical and independent of y. So, this is for x

propagation constant. This is x propagation constant so all of this should be.

So, similarly you can do it for y as well. So, this is something you should keep in mind

because the wave is distributed between 1, 4 and 5 and similarly if you are taking y

direction so 1, 2 and 4 in that direction, y component should all be identical so that is how

you will keep that particular energy going through. You remember in the slab waveguide

if you want more to propagate, the propagation constant should be identical between the

two layers. So, this is something we saw. 

Again, we are using the same condition here. We have not invented anything new here

but the condition is here there are two directions that we have take into account, x and y.

So, now we can modify this wave equation that you could do this doh square, x by doh x



plus doh square y by doh y plus k naught square n squared x, y minus beta square equal

to 0. This is something that we know already. So, we need to do some rearranging here.

So, if we do that rearranging, doh square x by doh x squared, in this case squared, should

be equal to minus k naught squared n squared x, y plus beta square minus doh squared y

by doh y squared is equal to, we are going to introduce a separation constant here, minus

k x square. Perhaps I should use a different color here. Similarly we could, so this is

nothing but, this is separation constant, nothing new. Similarly, we can do for our y as

well. So, this is equation you can keep this as 2, this is equation 3, and this is equation 4.
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So, now we can write the same thing for y as well. So, we can solve for y function. So,

doh square y by doh square equal to minus k naught square n squared x, y plus beta

square so now here I can write this as minus kx squared which is equal to minus ky

square. Again this is just a separation constant. So, this is we call it equation 5. So, what

we are going to consider here is the refractive index that n x, y that we have. So, this is

uniform within the region of interest. 

So, here we have 1, 2, 3, 4 and 5 so at least in 1 is where we are interested in because n in

region 1 is where we have our core, but this core refractive index is uniform within the

region and the rest of the region it is uniform but less than what you have in region 1. So,

will  use  what  we  call  a  step  index  refractive  index.  So,  that  means  you  will  have

something like this. So, this is region 1, region 4 and region 5 let us say so there is an n1

what we have here. So, this is the refractive index within the region here. 



So, now n x comma y will be equal to n1. So, if n 1 is greater than the rest of the region

so that is what we have agreed so far, then the possible solution, allowed solution will be

of this kind. So, x of x will be A cos in this case k x times x plus phi of x. Similarly for y,

you will have B cos k y times y plus phi of y. So, in this case phi of x and phi of y are

nothing but face constants that are adjusted to match the boundary condition. 

So, if you remember again I want to go back to our simple planar waveguide discussion

here. We had reflection from the boundaries. So, we had the face accumulation because

of reflection from region 1 to 2 and region 1 to 3 so phi 2, phi 3 for the face matching. So,

in this case phi of x and phi of y are similar but then 1 is associated with x boundary and

the other one is towards y boundary. 

So, now the separation constant that we have, kx and ky, should satisfy, the separation

constant should satisfy the boundary condition here that is given by beta, so k naught

square,  n1 square minus kx minus ky square.  So,  this  is  the condition  that  it  should

satisfy. This is coming from our equation number 5 itself. So, this is from 5 so this should

be satisfied. So, these two equations we call this equation number 6 and this is equation

number 7.
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So, now you can clearly see the similarity with the slab waveguide discussion that we had

in the earlier lectures but then the only thing here is everything is double now, everything

is with x and y. So, the outside the code, the guided mode solution should at least have

one component which is exponentially decaying so that is an important requirement in

order to confine the light.

So, let us look at the cross section again here. So, this is where you have the light that is

getting confined. So, outside all these regions for the moment let us not worry about these

corners, the corners we will bring it up as we mature the understanding here. So, all the

dotted regions that you see here, so the dotted regions should have at least one component

that is decaying.

So, for example, if you take the x component along 1, 2 and 3, all those components

should be oscillating in one of the coordinates but then for 2 and 3, should have at least

decaying solution in the other coordinates. So, that is very important. Similarly, for 1, 4

and 5 you will have oscillating solutions in let us say in y direction, but in x direction you

should have decaying solution for 4 and 5.

So, the required condition here is, so let me do that. Outside the core, in this case, region

1, the guided mode, this is very important, not for all the modes, for the guided mode

solution,  there  must  be  at  least  one  exponential  decaying  component.  So,  this  is



something important that we should all keep in mind because you have x and y. If you

take a simple thin film planar waveguide understanding, it will be all clear because you

will have oscillating solution here and decaying outside.

So, that is true in this simple geometry but then you also have a vertical component here

along x. So, in this case again you will have a decaying solution here,  an oscillating

solution and decaying solution. So, as you can see here when it is oscillating along y

direction in this case, it will be oscillating here, here and here. But then when you look at

x component, it is decaying. So, you should at least have one decaying solution in order

to keep this mode in.

So, we will  visualize  this  as we progress but keep this  in  mind.  We will  revisit  this

particular statement later on in the lecture. So, let us consider solution in region 3, for

example. So, region 1 is where we have our waveguide propagating, mode is sitting, but

let us look at region 3. So, region 3 is where you should have something decaying. So, let

us look at region 3. 
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So, let me draw this again so that you know we keep this in mind, 1, 3, 4 and 5. So let us

consider region 3. In this region where we need to match the boundary condition along y.

So, you have your y and you have x so for x greater than 0 if this is there we can say x

greater than 0. How are we going to understand this? So, we can right away write the

wave equation. So, doh square psi divided by doh x square minus ky square psi plus k

naught  squared n 3 squared minus  beta  squared  psi  equal  to  0.  So,  this  is  the wave

equation in region 3. So, this is the wave equation in region 3. 

So, this is what you have. So, now if you substitute the equation 7 here, so you have 7

into 8 now so we are going to do this. If you do that then what you will end up with is the

right hand side of this, doh squared y by should be minus k naught squared, n3 squared

minus beta square minus ky squared which is equal to we just do some rearranging here,

k naught squared, n1 square minus k naught square, n3 square minus kx square. So, this

is equation 9.
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So, this has the solution, so the solution here, let us say this is psi 3, so you have psi 3,

around x direction will be, I will put it as x here, e to the power minus gamma x for x

greater than 0. So, this is actually the solution to this. So, what is gamma 3 here and the

root k naught squared, n1 squared minus n3 squared minus ax squared. So, this is again

something  familiar  for  us.  We have  seen  this  decaying  so  how this  would  decay  is

because you have an imaginary solution so that means it is decaying here.

So, this is the decay constant gamma that we have seen here. So, now we have seen how

this field along x is going to look like. So, we can put a field along x and y now together.

So, let us put this, how the field is going to look, both in x and y. so let us go back and

look at this particular structure again. So, we just looked at this x component and along y,

it should have an oscillating solution. So, all the solution along y will be oscillating for 1,

2 and 3 but then for 3 the y component of the solution will be decaying.
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So, let us write the total field here. So, total field Psi of x, y now is nothing but some

constant c cos k y plus Phi of y so this is our oscillating component along y direction. So,

along  y  direction  you  will  have  oscillating  for  1,  2  and  3,  all  the  three  will  have

oscillating solution. But then the component that we just found for x, so e to the power

minus gamma c times x so this for x greater than 0 and then y between 0 and let us say

some with b so we can put b here let us say. 

So, within this particular region we have a solution for our field in this region 3. So, we

can continue and do this for all the other regions as well. So, the similar set of solutions

we can do it for other regions, x and y. So, let us just write for simplicity for 2, 4 and 5 as

well. So, 2, 4 and 5 just to give us some understanding on this. So, x2 will be e to the

power gamma 2, x plus a for x less than minus a, so a is nothing but the width here. 

So, the dimensions are a and b and then you could have y, 4 of y is nothing but e to the

power of minus of 4, y times b, this is for y greater than b and then we have y region 5

which is e to the power gamma 5y for y less than 0. So, these are all three different region

components for x and y. So, what is gamma 2, 4 and 5? That will follow the similar trend

that we had for 3 here. So, this is 3 here so let us do that as well.
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So, gamma 2 is nothing but k naught square, n1 squared minus n2 squared minus kx

squared, 4 is root of k naught squared, n1 squared minus n 4 squared minus ky squared, 5

is nothing but k naught squared, n1 squared n5 squared minus ky squared. So, these are

all the decay constants. So, this is all nothing but decay constants. 

So,  as  we already discussed in  the  earlier  lectures,  this  decay that  you see from the

interface it follows this gamma factor and this gamma strongly depends on the refractive

index contrast between the two. It could be n1 to n2 or n1 to n4 or n1 to n5 so difference

between the core refractive index and the index that is covering this. So, the higher the

refractive index contrast, the lower is the range. 



For example you could have this and you could have this. This is as a function of x or y.

So, here let us say this is gamma 1, no this will confuse you. Let me pick two colors now.

So, there are two gammas here. Red one and then I will pick a blue one here. So now the

red gamma that you have is greater than the blue gamma. So, when you have greater

index contrast, the difference between the two, then you are also going to make it decay

faster. 

So, that will ensure that you have high field confinement so this is one of the reason why

we try to use high refractive index contrast mediums in order to confine light tightly. So,

we will see this on our different waveguide platforms but remember about this.
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So, now we have just an example of the optical field is in different regions but let us have

the two components distributed in all the different regions that we saw. So, let us take

this. We will look at the different regions here. This is region 1 and then we have region

2, this is region 3, and this is region 4 and region 5. So, these is the regions that we are

looking at. 

For the central region, we will have oscillating solution for both x and y so that solution

will look something like that, kx, x plus phi x. Similarly, for y, ky y plus phi y. Let us

look at 3 which is something that we just saw. So, cos ky y plus phi y and you will have a



decay along x. So, that means e to the power minus gamma 3 times x. So here this is y

and this is x. So, just keep that in mind.

So, now let us look at y and so y again it is quite trivial that you should have oscillating

solution along y. So, cos k y y plus phi of y but now it should decay here, so e to the

power gamma 2 x plus a so because this is a and let us say this is b so this is 0. So, this is

1, so let us look at region 4. Region 4 you will have oscillation along x so you can write it

here and also I can write this here as well. So, now it is going to be decaying along y

direction. So, e to the power minus gamma 4, y minus b and here e to the power gamma 5

times y.

And similarly, for the edges so that is where the tricky part is. Around the edges you will

have only decaying solution. So, e to the power minus gamma 3 x so that is coming from

here, e to the power minus gamma 4, y minus b. So, you have the y component coming

from here, the x component coming from here. So, it takes the boundary or the solution

from the neighborhood to do this because there is no clear boundary condition you can

apply here. This is coupled. 

So, similarly here e to the power of minus gamma 3x and e to the power gamma 5 times

y. And at the bottom we have e to the power of minus gamma 4y minus b, e to the power

of gamma 2x plus a and here e to the power of gamma 5y and e to the power gamma 2x

plus a. So, now the corner regions got only decaying solution. You will not have any field

here at all. So, this is what the challenge is about when you are doing analytical solution

to this.

So, let us quickly look at how you could solve this boundary value problem once we

understand this. So, with this understanding of field, both oscillating field and decaying

field that you have inside this region, one should be able to identify where the field is and

what is the amplitude of these fields that one could have so those are all the things you

can find out with the understanding we have so far.

But  the  next  step  is  to  identify  this  beta,  primarily  we  are  chasing  the  propagation

constant. We need to find this propagation constant from the solution that we have. Right



now we have just found how the solution is going to look but then we have to quantify

that so that quantification comes from the propagation constant that we have.

So, we have kx and ky that you could find out but then as a complete mode so individual

components we have, but then as a whole it has to propagate with one single propagation

constant. So, we need to then solve this using boundary value approach. So, let us look at

that in the next lecture. Thank you very much.


