
Photonic Integrated Circuit
Professor Shankar Kumar Selvaraja

Centre for Nano Science and Engineering
Indian Institute of Science Bengaluru

Lecture 17
Field Equation

Hello everyone. So, let us look at the wave equation or rather from wave equation to how the

field  equation  looks  like.  So,  the  last  lecture  we  looked  at  how we  can  understand  light’s

propagation and how one can confine and how the light actually gets decayed so outside the

waveguide structure. So, now we need to put a proper mathematics around this understanding of

light decay that is the evanescent field and the oscillating field inside. So, we need to look at the

wave  equation  for  that  and  find  solutions  to  the  structures  that  we  have  using  Maxwell’s

equations. So, let us dive in. 
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So, a wave equation could be approached by looking at different components that we have in the

system. So, we have y, x and z. So, we will have field Ex, E y, Ez these are all possible fields for

E and you will have H x, H x, H z. So, basically a common approach to find these fields is to solve

the wave equation with a boundary condition. So, let us look at a linear isotropic waveguide. So,

linear isotropic is very important to understand because this has implication on the permittivity.

So,  we want  to  take this  as  a  isotropic  medium,  so your  dielectric  constant  is  independent,

spatially independent.



So, there are 2 laws we are going to, there are 2 gauss law we are going to use for E and H and

we can write  that  taking those 2 gauss law we can write  this  ∇ . ε E=0,  ∇ . E=
−∇ ε
ε
E and

∇ .H=0. So, ∇ . E will not vanish in general because epsilon x y is spatially dependent. So, that

is something we should keep in mind. So, now let us use the Maxwell, we will have something

of this kind, this is and for H field, so this is what we have once you apply the Maxwell into this.

So, there are 3 components here  Ex, E y and  Ez for the electric field. They are generally coupled

together because your delta epsilon is non-zero in a waveguide series. So, for the same reason

H x, H y and H z are also coupled. So, all these components are coupled as I mentioned and this as

well. So, one could then that is the vector characteristic of these mode fields in a waveguide or

strongly dependent on the geometry and the refractive index profile of your waveguide.  The

reason  for  that  is  epsilon  x  y.  It  strongly  depends  on  the  dielectric  constant  how it  is  the

represented in the structure. 
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So, for a TE mode in case of a TE mode let us say we have delta epsilon perpendicular to E so

that ∇ . ε E=0 . So, each component of the electric field of a TE mode satisfies a homogeneous

scalar differential equation. So, the magnetic field component of TE modes are still coupled, so

they are all coupled as well all. So, with this let us look at a very simple understanding of a step

index waveguide or so a wave equation for a step index profile. So, step index is something that

we already saw where you have n2 and n1. So, this is a function of x.

So, you have 2 different refractive indices or 3 different refractive indices depends on how you

want  to  do  this.  So,  now we can  write  a  homogeneous  wave  equation  separately  for  these

different regions. So, you will have epsilon 1 here epsilon 2 here and for all practical purpose

you could also have n3 here if you want. So, we can put it little bit lower if you want. So, we can

write this there because the constant epsilon becomes 0 here so within each region.

So, within a region delta epsilon is 0 within each region but then between the region it is not. So,

if  you  look at  the  whole  structure  altogether,  your  delta  epsilon  is  non-zero  but  inside  the

medium a delta epsilon is 0 because it is uniform medium. So, assuming E and H are harmonic

guided waves then we can write the longitudinal component as  
∂2E z
∂ x2

. So, this is nothing but

longitudinal field component plus 
∂2E z
∂ x2

+
∂2Ez
∂ y2

+(k i
2
−β2)Ez=0 .



So, k i represent whichever medium you are in whether in n1, n2 or n3. So, similarly we can do it

for H field as well. So, 
∂2H z

∂ x2
+
∂2H z

∂ y2
+(k i

2
−β2)H z=0. So, your xy field is where you have your

fields and that is why we do it this way and here k i=0squared is nothing but k i=ω
2 μo εi , which

is nothing but k i=ω
2μo εi=

ni
2ω2

c2
, it is a constant within each region. So, if you are talking about

region n1 and this is a constant if it is n2 this is this is a constant based on the refractive index.

So,  this  homogeneous  equation  is  same  as  the  same  form  written  for  each  of  these  field

components you can do it for x y and then H x and H y and it is not necessary to solve for each

and every component. It is important, it is not necessary to solve for all field components. So, it

is not required so it is not necessary to solve for all the field components that we have. It is good

enough if we solve or if we find Ez and H z. So, this is good enough by doing we can actually

expand and then find the other components. 

So, the more field (()) (9:51) can be obtained by solving just 2 equations. So, whatever we have

here, we do not need to have the 6 equations that one can expand for the 3 components, here Ex,

E y, Ez and H x, H y and H z. So, we do not have to do that. So, we can just keep it this way where

just 2 components are good enough in order to extract the other components and how do we get

that is by using the boundary condition these interfaces between the different regions based on

that we should be able to do that.
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So, let us look at how one can use this approach to find the solution of this electric field or

magnetic field in a very simple planar waveguide. Let us look at a very simple planar waveguide

here. We have a waveguide that has refractive index n1 here,  n3 and  n2 so light is propagating

through this and the coordinate system is similar to what we have been discussing so far. So the

direction of propagation is z and we have field in x and     y direction. So, here n1 is greater than

n2 and n3, so there is something given. So, we call this as a simple slab waveguide.

So, for this let us look at both TE and TM. So, you will have TE mode and you will also have

TM mode. So, we could consider  
∂
∂ y

=0  because the refractive index profile change across y



direction is nil. There is no change in the refractive index along y. So, your 
∂
∂ y

=0. So, there is

no change there. So, this will actually reduce the complexity that we are going to have here. So,

this is very useful starting up with a very simple planar waveguide. So, for TE wave let us look

at how the TE is going to be, for a TE planar in a planar waveguide.

So, let me so where Ez will be 0 all so such that the form relation, the relation here for transverse

component to the longitudinal component is thatEx=H y=0 because 
∂H z

∂ y
=0. So, your 

∂H y

∂ y
=0

because field is continuous and your Ex and H y will be 0 as well here. So, this is the implication

here. So, the only non-vanishing part or field are H x, E y and H z. So, look at it.

So, this is something we already noted so 
∂
∂ y

=0 . So, 
∂H y

∂ y
=0 in this case and that will result in

Ex and H y being 0. So, because of this implication the only non-vanishing part we have is H x,

E y and  H z.  So,  because there  is  only 1 non-vanishing electric  field,  so there is  only 1 non

vanishing E field and that is your E y and this becomes much more simplified like this and your k

here is 

k=ω2μo ε x. 
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And you can get from this you can get our H x=
−β
ωμo

E y  and H z=
β

iω μo

∂ E y
∂ x

 . So, now we can

do a similar approach for TM waveguides as well, so, phi TM mode as well. So, in terms of TM

your  H zfield is 0. This is only for planar waveguide, in a planar waveguide your Hz is 0 and

since your field is 0 this impliesH x and E y are also going to 0 and now since you have only 1 H

field that is non-vanishing, so, here non-vanishing fields are  Ex,  H y and  Ez. So, now we can

write your H field as, so this is actually your H field.



(Refer Slide Time: 16:31)

Now, from this H field we know we can get Ex field which is Ex=
−β
ω ε

H y then we can also get

Ez field which is Ez=
−1
iω ε

∂H y

∂ x
  and, so you can apply this into over earlier equations that we

saw we should be able to get these fields done. So, now having these fields defined, so this is

how they are going to look but we have to still find the modes modal solutions here, how the

fields are going to look like. So, this is just the wave equation. We do not know the solutions for

this. So, we know we have formulated the wave equation but we need to find the solution to this

wave equation.

So, let us look at how the solution could be. So, the solution to the wave equation. So let us

assume that this is the how the solution will be. So, for a TE field, unit vector here so field is

along x E= ŷ E y (x )e
i(βz−ωt ). So, this is very simple form. So, when you substitute this into our

wave equation here, so what is the wave equation 
∂2E y
∂ x2

+(k i
2
−β2)E y=0 . 

So, we need to substitute this substitute this in the wave equation and this we can solve this the

second order differential equation and your solution for this will be equal to E y∝e
+¿ix √ki

2
−β

2
¿. So,

this how your field is going to look like and the solutions are going to be sinusoidal in nature that



you can see from here. So, it will be sinusoidal depending on the magnitude of k. So, let us look

at the nature of this solution.
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So, we have to look at this factor and  k i
2 whether it isk i

2
>β2 ,k i

2
<β2 . So, these two are two

possibilities. So, when k i
2
>β2  this will result in the sinusoidal solution and if k i

2
<β2 e.this will

result in exponential result. So, if a mode or if a solution needs to be propagated through the,

through a waveguide we call it that guided mode, if you want to have a mode that is guided the

cladding region should be exponential that means we saw earlier so something like this. 

So, in the cladding region you want the solution to be having exponential solution while in the

core region it should have sinusoidal solution. So, how to achieve that? So we have this let us say

this is  n1 and n2 and n3 . let us say. So, in this case you want for a guided mode. For a guided

mode you want the beta that is propagating through this should be greater than  k 2 and  k 3. 

So,  this  is  what  you want for an exponential  solution but now  β2<k i
2  to  have a sinusoidal

solution. So, this is the condition that you want to have when you are having such a waveguide

structure.  So,  this  is  exponential  half  this  is  sinusoidal.  So,  let  us  let  us  look  at  the  field

component what is the general form that you can you can define for this different region.
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So, let us take a simple waveguide structure here and we have a core and we have clad. So, we

define a simple core here this is x and let us say this is y. So, we are going to look at how the

field is going to look like. So, in the core your field is the something of this kind, while in the

cladding let us say some thickness, so you have some thickness d and here this is d and so on and

here the field will look something like e−αx. So, you can see the oscillating field is at the center

and while the field outside are decaying.

So, we could go back to our earlier discussion in the last class I believe where we looked at the

phace matching condition in order to achieve the similar kind of results here, so here again from



the detailed wave equation and solving the wave equation we also arrive at the same. So, all

these constant a b c d, so these are all constants that will determine the oscillation strength and so

on. So the boundary condition is definitely useful in understanding this and based on this you can

find both for TE modes and also for TM modes in order to arrive at the same kind of solution

that we had.

So, this is this is rather important to understand how we achieved oscillating solution or what are

all the conditions to achieve oscillating solution you can keep a close eye on the approach here.

This is coming from assumption that E field is only in x y direction. So, each field is distributed

when the light is, when the field is in the x y plane and it is propagating along z plane. So, that

that is a reasonable assumption that we have made and holds good in many circumstances all.

So, with that we have come to an end to this this particular topic in finding the field nature so

how the field is going to be inside the waveguide and outside the waveguide. We had 2 different

approaches and here we looked at the wave equation and then solving the wave equation and we

were able to achieve it. And we could also do a similar kind of approach by just simply looking

at the wave vectors and how the phase matching happens and based on that we should be able to

do that.  In  the  next  class  we will  look at  some of  the  important  parameters  that  we use  to

characterize the waveguides. So, with that thank you very much for listening.


