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Hello, welcome back to another lecture on waveguides. So, let us quickly jump into the topic that

we left in the last lecture on understanding the waveguides and how one can define different

regions  and  also  how  the  electric  field  could  be  propagated  through  this  waveguide.  So,

particularly we are interested in slab waveguides, so we will continue doing that, let us first look

at whatever we just summarized in the last lecture. 

(Refer Slide Time: 00:57)

So,  we  concluded  here,  so  where  we  had  the  resonance  condition,  the  transverse  resonant

condition and that depends on the face that you accumulate when light is bouncing between the

two  interfaces  here,  so  that  is  the  face  here  2k1d cosθ+φ2(θ)+φ3(θ) are  the  phase  that  is

accumulated when you have reflection from the two interfaces that we have. So, we know from

our you know basic understanding of reflection that this phase shift is polarization dependent or

the electric field orientation dependent. 

So,  let  us continue a little  bit  more into this  cold reflection problem. So, let  us look at  the

orientation of electric field and how you can visualize the flow of a field through this medium. 
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So, let us look at the transfer’s electric polarization. So, that is TE polarization, so again z is the

direction of propagation, so we have we this so this is n1 and there is clad n2. So, now the light is

going to propagate through this medium like as we already saw earlier. So, now we need to mark

the electric field, so as you all know since this is TE your electric field is going to be parallel to y

axis and your H is here and E is here and n1 k  is in this direction. 

So, the electric field is pointing in y direction corresponding to the perpendicular or rather what

we call the S polarization, so S polarized light here. And the field here, what you call the TE

field this is entirely in xy plane, so there is something that you should keep in mind. So, there is



no Ez component. So, the field lice in xy and that is the reason why Ezwill be equal to 0. So, this

is propagating around z direction. 

So, let us look at TM polarized light or P polarised light, so this is what we have in this case the

same geometry we take light is propagating through this and now your H field is now in along y

and now our E field is perpendicular to the propagation direction and this is what we have as E

and n1 k , so let me write it a little bit bigger  n1 k  and here this is  n1 k . So, in this case you are

magnetic field points in the y direction and for this particular polarization your H is at will be

equal to 0 here. 

So, this is the difference between the two polarization that we have and how they propagate

through the system. And from here you can easily note that your phase shift is not going to be

same for both TE and TM and because of this reason, the solution to TE and TM waves are

going to be different as well. So, that is something that we should keep in mind that the solution

for any slab or any waveguide structure will be different for TE and TM. 

In addition to the transverse resonant condition,  which is again a discrete solution, so that is

something that I want to point out here, the guided mode, so the guided mode solution is discrete

so it is discrete so you cannot have arbitrary M value, so it will only take integral numbers, so the

mode number is 0, 1, 2 and so on, you cannot have 0.1, 0.2 as M. So, it has to be integral or

integer numbers on integral numbers only. 

So, if that is the case, so, that means your transverse resonance condition is discrete, because M

values  are  discrete  and this  results  in  discrete  propagation constant,  so it  is  the  propagation

constant has to be discreet. So, although your theta C the critical angle both here in the interface

between n1 and n2 and n1 and n3 does not depend on the polarization, but the phase shift depends,

the φ2, φ3, so φ2(θ) here and φ3(θ) as a function of theta this depends on polarization.

So, this is something that you should keep in mind, so it is the solutions are discrete from our

resonance condition, but then you are the phase shift that you get from the two interfaces is a

function of polarization. So, there are now you refining your guided mode solution here, it is not

just discrete, but even if they are discrete, there is one more factor to it, that is a polarization

factor. So, this the implication here is so TE and TM modes or waves have different solution for

transverse resonance condition. 



So, this is a very important understanding that one should have that the polarization different

polarization  of  this  waves  create  different  solutions  and  they  are  discrete  as  well.  Another

important thing is for a given polarization let us say whether it is TE or TM polarization the

angle, there resonant condition that you have for a small beta would corresponds to small Theta,

so we let us go back now probably I will draw a new one that is better. 
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So,  let  us take the  same slab,  the waves  could propagate without  any reflection  at  all,  it  is

through the axis, so there is no reflection at all and then you have another possibility where you

have reflection. So, the wave that is going through with the smallest angle here the theta, so this

will have the smallest beta. So, you will for a larger value of M, so beta will be increasing as a

function of M. So, as the M increases the beta decreases in this case.

So, βo>β1>β2  and so on. So, this is and this is again something that one could easily calculate

but this is what we have from our understanding here, so you can calculate it from the angle of

propagation her, so there is no phase shift and the quantity here will be higher, so the phase shift

will help you to do that. So, you could have βo, so m = 0 which will corresponds to βo and this is

the first mode we call it. 

So, we call this is the first solution or the lowest solution we call this as fundamental mode and

when  m≠0, anything higher we call this as higher order mode, so this is something that one

should keep in mind because m is giving you all the integers that requires you to index your



modes and the fundamental mode here is given as  mo or  βoin this case and then for  m>0  the

modes are called higher order modes. So, these are all solutions by the way. 

So, this could be just for TM and for TE as well, so this is for a given polarization, you can have

this, so you could have fundamental TE and fundamental TM. So, if I if one should be even more

specific you can put βo
TE and you could also make this for TM m=0 the same thing applies here,

but  we  call  this  TM,  but  then  this  is  again  fundamental  TM  mode,  so  you  could  call  it

fundamental TM or fundamental TE. So, this is something that you can you can revise and then

see how one can relate the discrete modes to the solutions with respect to polarization.

(Refer Slide Time: 13:22)

So,  now  let  us  look  at  some  plane  wave  representation  of  this  planar  waveguide  it  is  an

interesting way to look at the propagation here, which will give us even better understanding of

how light would propagates through this system. So, let us have this as d n1 n2 and n3, so the light

would propagate through this, like this system and we have theta can put θ1 and have light that is

radiating out, could be let us pick a different colour which will be good. So, light is leaking out

this way it could refract, it also reflect here. 

So, now we have light that is reflecting and light that is refracting, so let us put all these k vectors

now. So, this will be our k 1 and let us say this is our k 3 here and we can easily draw our k vector

triangle, so the k vector triangle inside will be beta here and this will be in this case h and you



could have k 1, so that is one way of the layer I think this might be a little confusing let me do it

this way, so this is h and this is k 1 and outside again we have beta this is k 3 and this is k 3 x let us

say. 

So, there is upward field and we have downward field, so whatever you have in the clad and

whatever you have inside, so the upward field is given by so upward field let us say Eu is given

by Eu=Eo e
i(ku .r )  and then so downward, downward field here is Ed=Eo e

i(k d .r ). So, what is this k u

and k d  is? 

It  is  nothing  but  Eu=Eo e
i(ku .r )=Eo e

ihx ei(βz) and   Ed=Eo e
i(k d .r )=Eo e

−i hxe i(βz) r=x az+az  and

k u=h ax+β az and  k d=−hax+β az.  So,  this  is  how  one  could  represent  a  plane  wave

representation for this planar waveguide structure. It is useful when you are doing a very simple

expansion and propagation here. 
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So, the total field so E total is nothing but E t=Eu+Ed, so if you add whatever we had we will

end up with E t=2Eo e
i(βz )coshx so this is what you get. So, now we are getting close to defining

how this field is going to look like, so from our earlier understanding of how the plane wave is

would could be used in order to explain this propagation and now we have a total field with

respect to the position, that is a total field is we will be  E t=2Eo coshx cos(βz−ωt ).

So, this is how your field is going to look like. So, this is nothing but the real instantaneous field

that you have here. So, if we if one want to see how this field would look like, so you have a

certain d here, so for a very simple waveguide at a slab waveguide like this we can draw our



modes now, so how the field would look like so as a function of position here? So, that should

look something like this. 

So, this is what the fundamental solution is going to look like we call this as TE0. mode this is

the fundamental mode. And now how the other solutions are going to look like it is basically

expansion of what we just saw let me put it, so this is TE1 this is the first order mode and then it

keeps on moving. So, now you will have a node like this so this is TE2, so this is how your mode

is going to look like as you can see this is all discrete solution. 

So, this is how your mode solutions are look like, so because m can only assume the integral

values so this will be discrete,  so that means theta’s are also discrete satisfying the resonant

condition.  So,  again  this  will  propagate  with  the  propagation  constant  of  β0and  this  will

propagate  with  β1 and  this  will  at  propagate  β2,  important  thing  to  note  is  this  is  all  TE

waveguide. So, this is all TE mode we could also do same TM mode as well. 

So, the one way of also representing this mode is through the 0 crossing that you have. So, we

call the 0 because there is no crossing across the 0 mark here, so there the field is going to decay

till the end but there is no field crossing within the structure that you have, so it is symmetric we

are drawing is not accurate here, but you can see here there is one crossing here, so we call this

as 1. So, there is no crossing this is 0. And here you say there is two crossings and here the mode

number 2. So, 1, 2 this is all higher-order so these two are higher order and this is what we call

fundamental mode. 

So, next let us look at the interface here, so we were able to plot this through this function, but if

I go on top so we have this interface between n1 and n3 and n1 and n2, we have studied in our

basic  electromagnetics,  so  when the  wave is  encountering  a  surface  then  there  should  be  a

boundary condition. So, the boundary condition we have studied is the continuity in the energy,

the electric field should be continuous, so the electric field vectors on the both the sides should

be parallel with each other. 

So, that continuity equation should be there, so unless you have that continuity energy would not

be able to propagate through this system. So, here again we have two interface, so the middle

you have wave propagating and we have two interface one at a top and one at the bottom. So,

now the question is if this wave has to propagate through this particular structure, then there



should be a continued to continuous energy distributed in all the three layers, so n1 n2 and n3 so

there should be a continuous energy equation between these, so the boundary condition should

be continuous. 

So, let us look at what is this boundary condition, in other words what is the phase matching. So,

different waves can travel at different speeds we know, the waves in n1will travel at a different

speed compared to  n2 , because the refractive index is different. Once the diffractive index is

different the propagation constant is also going to be different. Well  now the question is the

energy is distributed in these 3 layers, so how is it possible that the wave will propagate through

the system without disintegrating without losing their light? So, let us look at that through this

phase matching condition. So, let us say closely look at the interface.
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So, let us take the interface just single interface, n1and n2, let us put our k space k vector triangle

here, so beta is here, let me make it a little bigger, so this is beta and here also we will have beta,

so to make it specific we will put β2 here and β1, let me pull this little down, so this isn1, so we

have β2 and β1. 

The next thing is we have the vertical  vector that is  k 1 x and here  k 2 x and then we have the

propagation constant here n1 k  and here n2 k. So, this is this is rather straightforward, so we can

easily understand why we have done this. So, in the absence of one or the other it is going to

remain the same. So, now the phase change when it propagates through n1or n2 is going to be

different, so how do we make sure that the light actually continuous to flow? 

And this is where we need to make sure the propagation constant in β1, the propagation constant

in n1and n2are equal, that means β1=β2. So, from both on n1 side and n2 side the waves should

propagate with same velocity. So, β1=β2=β  , this condition is known as phase matching at this

interface. 

So, this phase matching, so what is the purpose of this phase matching? This will allow coupling,

coupling of oscillation field, between the two media. So, we want to make sure that the light is

confined inside one medium in this  case  n1.  So,  we need to make sure that the propagation

constant in n1 which is core and the one at the cladding here that is β2, so these 2 should be equal

only then we can propagate to light here. 



So, quickly looking at this β1 and β2 let us equate this. So, what is β1? So, β1 should be equal to

β2 this is what we said. So, what is  β1? β1 is nothing but n1 k sin θ1, so n1 k sin θ1, is our β1,. What

is  β2?  n2 k sin θ2, is  β2. So, now this is really excellent, if you look at this equation so you can

take out k, so n1 sinθ1=n2 sinθ2, what is this? This is nothing but our Snell's law. So, Snell's law

is back here. 

So, in a completely different way of looking at this thing, so we did not use geometric optics that

is what we normally use when we are understanding Snell's law for reflection and refraction, in

this case we did not do that we actually used wave propagation and propagation vector is here, so

even with that understanding we are able to, I think one thing I missed here is this this is θ1 and

this is θ2 let me just complete that is and that is why this θ1 and θ is coming from. 

So, it is quite amazing that you can arrive at this fundamental concept from whichever direction

you come from, so that is reassuring that whatever you have learned as basic can be arrived but

even more complex base, but giving you very simple solutions. So, we have achieved this phase

matching let us say right and what will happen to this condition if the waves are not at the angle

that you want? 
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So, there is a critical angle that you are looking for, so that is your total internal reflection angle,

let us say your phase matching at a total internal reflection angle, let us say some angle which is

greater than the critical angle. In this case you are sin θ1>
n2
n1

, in this case you are beta is nothing

but n1 k sin θ1=β2>n2k  . 

So, let us look at how that the vector looks like in our simple k space, so there k 2 xis what we are

looking at. So, that is what we already saw, so k 2 x=(n2k )
2
−(n1 k sinθ1)

2 . So, this is beta, so this



is n2 k  I did not do much here you can go back and have a look at this, so this basically this is

what you are finding k 2 x, this is nothing but  (n2 k2)
2
−β2.  

So, this is something that you can do, this is just simple Pythagoras Theorem, where you say

β2+k2 x
2
=(n2 k )

2.  If you want me to write we can write it here, so be  (β2)
2
+k2 x

2
=(n2k )

2 the

whole square. So, this is simple Pythagoras, so we are taking that and modifying it a little bit,

moving it the side, this is what you get. 

So, now the question here is you know your  β2>n2 k, would not be equal to the propagation

constant you have here. So, this is going to be higher, so your  k 2 x=(n2k )
2
−(n1 k sinθ1)

2  will be

higher or we can do some rearrangement here that means i√(n1k sinθ1)
2−(n2 k )

2, I do not know

why I am saying this i, so if you do this, i within roots now and this is k 2 x . 

So, now you can see that this k 2 x the constant along x direction is imaginary now, so because this

is imaginary you are going to have I can represent this whole constant let us say as alpha, so here

alpha is nothing but  α=√(n1k sin θ1)
2−(n2 k )

2  , so this is what we have as alpha. So, one can

represent this k 2 xas iα . So, now how is the field going to look like along the x-axis here? 

So, you want to know how the field is going to look going beyond and that is given by the field,

the  field  in  the  transverse  direction,  so  now the  field  in  the  transverse  direction  well  look

something E∝e−α x e−iβ z−ωt. So, now you can see here the propagation that you have when θ>θc,

so what we mean by that is this is the critical angle, so anything below the critical angle you are

fine, but if your angle is too steep, what will happen to that particular field. 

So, that field the angle beyond which you are going to lose that light and that that decay, how

fast it would decay is something that is given through this simple relation. So, this is from our

simple you know k vector representation and if you just simply do reorganization here because

of the magnitude of  n1 k sin θ1∧n2k . So, because of that magnitude you will eventually end up

with an imaginary k, the propagation vector will be imaginary. So, what that means is it is going

to be attenuated.  So, this  alpha that  we talked about  is  nothing but  the attenuation  and this

attenuation is what we call evanescent field. 
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So, this field that is dying outside is called evanescent field. So, evanescent field is field outside

the waveguide core that is decaying exponentially with an attenuation coefficient, coefficient are

attenuation factor given by alpha α=√(n1k sin θ1)
2−(n2 k )

2 .

So, this is actually the attenuation coefficient, so if you really want to know how quickly the

attenuation happens again we can do it here, so let us say n1 and n2 both of both the directions

and this is 0 and we know this is d and this is  
d
2

 and 
−d
2

let us say the field we saw that it is

going to be like this. So, here we have beta and here we have alpha, so beta is the propagation



constant that keeps the wave going through, alpha is the attenuation factor, so how quickly the

wave is going to decay. 

So, let us look at how this will happen, so when x ≥
d
2

   and the upper side your field is nothing

but  E=E2e
−α (x−

d
2

)

e i(βz−ωt ).  Similarly,  for  lower  side  where  we  have  x ≤−
d
2

  your

E=E2e
α (x+

d
2
)

e i(βz−ωt)
.

So, this is how you will have d electric field decay when it is outside the core of this waveguide.

So, this is how you can confine the light. So, we talk about wave guides can be designed to

confine light and propagate light this is how we achieve that confinement. So, in  n1 you have

solution that is oscillating, but then when it goes outside in n2 it will decay and at what rate it

decay? Is this alpha.

So, you can look at the constituents of this alpha, so it strongly depends on the refractive index of

the core medium and the cladding medium. So, if you want your wave to be highly confined, so

let me draw that, so there are two waveguides, let us say, they are all of same thickness then one

waveguide you have a field like this and for another wave guide you have a field like this. So,

remember that your dimension is identical, but then one is having this and one is having that. 

So, now the question to ask is the decay alpha here, so let me call this as α1>α 2, so which one is

greater? So, which one is decaying fast? Of course alpha, so α1>α 2. So, how did we achieve this?

So, this is achieved by at the refractive index contrast, so n1 and n2 we can have refractive index

n1 and n2 here, so when the refractive index n1 is much much greater than n2 you get very high

confinement that means you have very strong decay. So, the light is not allowed to go out, so it is

pushed inside but in this case and n1 is just greater than n2, it just meets the criteria. 

So, based on the refractive index contrast one can actually decay the light the evanescent field

that you have and in some cases you may want to have this evanescent field stretch longer, we

will  look at  this  in our application,  in some application we do want this  evanescent  field to

stretch out and we can engineer this decay rate or evanescent field by looking at the refractive

index contrast. So, let us look at another factor we define, so we are talking about refractive



index  n1 and  n2 and  so  on.  With  the  waveguide  got  its  own refractive  index  we call  it  as

waveguide effective index.
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So, let us start from our understanding phase velocity, we know the waveguide phase velocity, so

phase velocity is given by 
ω
β

, so this is the phase velocity. So, now if we say the refractive index,

so what is refractive index? So, refractive index is nothing but 
c
v

 , so we V p in this case. So, this

is refractive index, so this is refractive index. But now what is effective refractive index? 



So, effective refractive index is nothing, but n effective is nothing but  
c
V p

. So, here  V p is the

phase velocity in the waveguide, so in other words, let us try to expand this because this looks

too trivial that there is something to this, so this phase velocity is given by this, so your  V p is

nothing but 
c ω
β

, so beta is the one that dictates this in other words it says 
β
k

 and you can also

write this in a more simplified form n1 sinθ. So, this is the effective refractive index. 

So, effective refractive index is a key parameter in a guided propagation and refractive index that

we talked about  n1 n2 those are all refractive index in an iron guided session, so n effective is

actually applicable to propagating mediums or guided medium, so when you talk about any kind

of  waveguide  that  it  be  slab  or  channel  you would  actually  ask  for  effective  index of  that

medium. 

Since this is beta we also saw that this beta is actually  βm depends on the mode number and if

that is the case n effective should also be a function of the mode. So, a TE mode TE0 will have β0

and it will have neff 0 and TE1 mode will have β1and then neff 1, so each mode will have its own

effective  refractive  index  here.  And  it  will  the  wavelength  inside  this  waveguide  is  also

determined by this neff . 

So,  now the wavelength  that  we measure  along z direction,  so now the wavelength  is  now

lambda here along z is given by lambda over n effective, so now with this effective refractive

index the wavelength would also change and now this is also a function of mode that is m here,

but again we know that your lambda and you are refractive index, so the lambda is also function

of whether it is free space or in medium here, but this n effective is related to n and it is and that

is one of the reason why this ineffective is also a function of lambda. 

So, all this is related to the dispersion that we already discussed quite in detail earlier on. So,

effective refractive index is something key to our understanding which we use to capture a lot of

things here, so we are with effective index you are capturing the material property the n the

refractive index or the bulk refractive index of the medium, we are capturing the lambda, the

wavelength of light through k, so it combines the physical properties and also properties of light

that is propagating through this medium. 



So,  effective  refractive  index  is  an  important  parameter  that  we  use  in  quantifying  light

propagation in wave guides. So, with that we have come to end of this waveguide understanding

so we know how the light is propagating through and how we can understand the confinement of

light and how the interface is and the conditions are affecting the light propagation. 

So, in the following lecture we will look at the actual field profile, so we will look at the field

equation and then we have we have drawn the Gaussian profile and also the first order mode and

second order mode, but we will actually look at the Maxwell equation and the wave equation to

look at how this mode shapes evolve. So, thank you very much for listening.


