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Hello, everyone. So, let us look at modes in these waveguides that we discussed earlier. So,

waveguide structures are two-dimensional when you look at the cross-section, and they are

three-dimensional as you progress through. But most of our discussions are going to be two-

dimensional. So, it makes life easy in understanding the other direction as just extrusion. 

But  then  we  need  to  understand  how  our  electric  fields  propagate  through  this  two-

dimensional structure that we are currently looking at. So, we characterize the energy flow

through these structures using something called modes. So, these are all nothing but solutions

to Maxwell equation. So, you take the structure and solve it with your Maxwell equation,

then you will arrive at these solutions. So these solutions are nothing but modes. So we will

look at this wave equation little later. 

But let us look at how the electric field is going to appear, and then how these fields are going

to propagate through our basic understanding even from Ray theory. So, we can take some

help from how rays are propagating and let us implement that and understand how light can

propagate through this structure using very simplistic model, but, you know, right one. So

simplistic model should not be too simple that you leave off the details. Here you are going to

have simple discussion but then accurate as well. So, let us look at these waveguide modes.
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So,  what  are  waveguide  modes?  These  are  all  nothing but  characteristics  of  a  particular

waveguide. So this is a characteristic solution of a particular waveguide structure. And this

wave guide modes is a transverse field pattern. So, it is nothing but transverse field pattern,

electric  or  magnetic  field  whose  amplitude  and  polarization,  this  is  very  important,

polarization remain constant along the direction of propagation. So, let us say along the Z. 

So now you can actually write very simple electric and magnetic field of a very simple mode,

let us say E(r,t) r is a function of position. One can write it as E (r ,t )=E (x , y )ei(βx z−ωt). So,

this is all from our earlier discussion. This is nothing new that we are introducing here. So, let

us just keep it E (r ,t )=E (x , y )ei(β z−ωt ) H (r ,t )=H (x , y)ei(β z−ωt ).  So this is how, you know,

the electric and magnetic field of any mode could be written. you can add a number to this.

So, there I said these are all solutions. 

So, there are characteristic solutions. So, you could have more than one solution. So, if there

are more than one solution, we can also have what is called a mode index. So you could

define, let us say, m here. So we can put some m, and this m is nothing but mode index. And

βm is nothing but your propagation constant. This is propagation constant of the mode. So,

there is nothing new. So, this is something that we recap on this. So, for a two-dimensional

waveguide. So you will have transverse optical confinement. And there are two degrees of

freedom we have, over the x and y plane. 

So, your mode number V con sist of then two parameters. So, one in x and one in y. So the

way to understand this is you have x and y. So you could have two degrees of freedom is



what you have. So, then the mode index that we defined as m here. There will be two, so one

along x and one along y. So then your m is not just a single index. So it will be double. So

you have to put mn, let us say. 

So the ideal way of doing this is, you know, your m would become m and n. Let us say m is

along y direction and n is along x direction. So these are all number of solutions you could

have along x and number of solutions you have along y. So this is this is something that we

would do it and this m and n are nothing but these are all integers. So integral, so these are all

integers like 0, 1, 2, and so on. These are all discrete numbers. There is you know. 

So planar waveguide for example. So they do not have this y. So this is a non-planar. So let

us, if you look at the planar. So in the y direction, it is rather, it is infinite. So you have

complete infinite width, let us say. So there is nothing there. So you do not have, your mode

field does not depend on the y-coordinate if it  is a planar. So, that is something that you

should also remember here. So that is something to remember. 
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Let us move on to looking at the general idea of this wave propagation. So we have a very

simple a step index waveguide, let us say. A thin slab, let us start from the slab. How you

could propagate through this? So you have propagation along z, this is x and this is y. So light

is propagating along z. And refractive index here is n1 and there is n2 and for general case, let

us put it as n3. So this n3 could be equal to n2. So that is a special case. 

Let us keep that n2 and n3 are two different. So now I want to propagate light through this.

This is something even in the introduction class I actually told you guys, how to make light



propagate. It can be also done through this kind of mirrors. So I can put mirrors and mirror

will reflect light. So we want a similar kind of scenario here. So what we need? The light

should bounce back and forth. It should not go out. 

So I want lights to go up and reflect back and reflect back again, and so on. So I want the

light to propagate in this fashion continuously. So how do we achieve this? So we need to

achieve this by looking at the critical angle, you remember total internal reflection? So you

need to have total internal reflection here and total internal reflection in this surface. So you

want total  internal reflection between  n1 and  n3,  and then you need to have total  internal

reflection between n1 and n2. 

So let us look at how to achieve that. So for that we need to know the critical angle. So there

are two critical angles here. So critical angle with respect to n1 and n2 that means sin−1 n2
n1

 will

give you critical angle with respect to  n2. The critical angle with respect to  n1 is given by

sin−1 n3
n1

. So now you know because  n2>n1  let us say. So let us take this as the condition.

Then your θc2 will be greater than theta θc3. So this is something that. 

So how do we make sure that we achieve the critical angle here? If θ>θc 2>θc3 , then the wave

inside n1 or core will be totally reflected at the interface between n1, n2, and n1, n3. And this

result in guiding. So this is how we can start guiding right now. So I hope this is this is clear.

The other thing to notice is, you know, this is a ray that is propagating. you have wavefronts

following this. 

So there are wavefronts following this. So that is something that you should keep in mind,

which  we will  use  it  later.  So  these  are  all  nothing  but  wavefronts  and  this  wavefront,

distance between two wavefronts is nothing but your Lambda. So this is nothing but 
λ
n1

. You

have, you should not forget about the medium you are propagating through. So  
λ
n1

 is the

wavelength inside the medium n1. 

So, the light is going to get reflected back and forth, these two interfaces. So the guided mode

can exist, so you only when a transverse resonance is achieved. So that is what we mean by



reflecting back and forth. So reflecting back and forth between the surface is nothing but

creating this resonance between the two layers, the top, and the bottom layer. So let us, you

know, reassure ourselves of what we mean by the guided mode.
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A  guided  mode  a  guided  mode  can  only,  can  exist  only  when  a  transverse  resonance

condition is satisfied, so that the repeatedly reflected wave has constructive interference with

itself.  So this  is  a  important  definition  of a guided mode. So the modes are nothing but

solutions.  But then,  what is  a  guided mode? So the guided mode can only exist  when a

transverse resonance condition is satisfied. That means the light is bouncing back and forth.

So between the two layers here repeatedly and has a constructive interference with itself. 

So light has to exist as it propagates through, so it should not die down. The only way that

one can assure that is by having an constructive interference because you see here the light is

going back and forth. So your wavefronts are also moving. So you should have constructive

interference  between  these  wavefronts  in  order  to  keep  the  energy  flowing  forward.

Otherwise, you will have leakage and you will have loss of light. 

So there will not be any guiding anymore. So let us look at, wave vectors that are that one can

define as it propagates through. Let us let us let us make a new one here. So you took a thin

slab and this propagation direction. So we had  n1, n3, and n2. So the vertical component here.

so the k x component, so you can decompose this into k x and k y component. Here k x. That is

your x component of the wave vector. So k x=k1cosθ . 
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So now the, at an incident angle theta here. So we are talking about what angle it is going to

make so that angle here is given. So now what is the component along z direction. So k z, or

we call that as propagation constant k z=β=k 1sinθ. So now the wave is bouncing back and

forth. So it is going this way. So then there will be a phase shift in this optical wave due to

this round trip. 

So when we travel from one position A to position B, we all know that light will accumulate

a certain phase and this phase depends on the refractive index of the medium, the wavelength

to, and then the distance between this. So what is that. Let us look at the phase shift. The

phase shift of the optical field that is, this is due to round trip between the two interfaces. So

that is nothing but  kd cosθ. So this is  k 1d cosθ.  So this is this is very simple phase shift

relation that we have seen earlier. So now let us expand our understanding of this propagation

by using a K-vector triangle, which is which is not very difficult to reach out. But let us let us

try to do a K-vector.
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So before doing that  let  us  write  all  our,  you know, propagation  constants  k 1.  k 1=
n1ω

c
,

k 2=
n2ω
c

, and k 3=
n3ω
c

. So this is all propagation constants of n1 and n2 and n3 layers. So this

k 1=
n1ω

c
. So that is something that you can take it. So let us now look at the components

here. So, we have, again let us draw this simple propagation here. 

So this is  n1. So light is propagating along this direction with a propagation constant beta.

And it has propagation constant  k x, the vertical component of the propagation constant  k x,



and this is represented by your k 1. So this is where this is where light is propagating. So now

so the k x=
n1ω

c
cosθ which is something we already saw, that is k 1cosθ. And β=

n1ω

c
sin θ . 

So now we can easily write using Pythagoras what is the dimension of this will be. So this is

very  simple  K-vector  triangle,  you  can  call  it  K-vector  triangle  if  you  want,  how  the

orthogonal components of your propagation constant beta and k x are related. So this will be

very useful further on when you are designing any wave guide, what should be the magnitude

of  k x. And what is the magnitude of beta based on  k 1 that you have in the propagation. So let

us decompose this into their components and dig a little bit more and understand what this  k x

and beta look like.
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So let us say  k xand beta, let us look at that. So the wave was propagating along z like this, let

me take the other color because, we, that is what we have done earlier. So this is basically  k 1.

So this is  k 1 and the wavefronts we saw, like this and it had a certain distance. The thickness

is d, perhaps if it was not clear. So this is nothing but d. So d is the thickness of the slab. So

now they are moving. So now we have decomposed this into  k x and beta. So let us look at

how beta and  k x look like. The first thing is is looking at  k x component. 

So k x component is basically vertical component here. So this is what  k x looks like. It is a

vertical resonance, so the wave is moving up and down. Along the x direction here. So now

let us look at beta. So now beta is given in this direction. So this is beta. So this is  k x and this

is beta. This is beta. And now beta is defined along the propagation direction. So now our

beta wavefronts are located this way. So as they propagate. So now we can clearly see that

you can decompose or propagating zig-zag wave.
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So zig-zag wave that it is propagating could be decomposed into two orthogonal components.

So the  longitudinal  component  and the  transverse component.  So this  is  the  longitudinal

component along z and this is the transverse component. So the transverse components are

going to go up and down. So this is this is what we mean by constructive interference. So it is

like  a  resonant  cavity.  They  are  going  to  move  up  and  down,  creating  a  constructive

interference. 

So I go back to the definition we had here for a guided mode. So the guided mode can exist

only, it  can only exist when there is a transverse resonant condition. And they should be

constructively  interfered.  So there  should  be  a  resonance  and they  should  constructively

interfere.  So  this  is  this  is  the  condition  again  we  come  back  to  this,  based  on  our

understanding so far. So how do we do this resonance condition? How do we know that a

wave is in resonant condition? We can easily derive this resonant condition. 



So let us look at the phase shift because whenever you reflect off the surface, you will have a

certain phase shift, let us say. So you have  n1, n2, and n3, let us say. So you have reflection

now. So there is a phase shift when you go from n1 to n2, and we call that phase shift φ2, let

us say. And the phase shift between  n1 and  n3, we can that  φ3, let us say. So now we can

easily take this phase shift from our simple reflection understanding. So for TE wave and TM

wave, or in other words S-polarization and P-polarization reflection of a surface. 

So that that is something that we already studied long time ago, we understand that. So this φ2

and φ3, so this reflection th  at we have off here and off here, so this is φ3 and you say φ2. So

these two are a function of theta. So that means φ2(θ) and then, sorry, φ2(θ) and φ3(θ). So

what angle it comes in to create the constructive interference. 

So now if we consider the phase shift, the two phase shifts we have, and then we also know

because it is traveling a certain distance d. We know what is that phase difference is. So, if

we put all these things together, we will get the resonance condition. So let us look at that,

how we can come up with that condition. 

So φ2, φ3 as a function of theta and what is the phase shift because of this thickness d, this is

something we saw earlier. So the phase shift of the optical field due to the round trip, so that

is  2k1 d cosθ. So that is something we already know. So 2k1d cosθ is because of the round

trip, the distance that it is travel. And the other phase shift is because of the interface between

1 and 2. 

The next one is between interface 1 and 3. So all these phase shift put together should be

equal to  2k1 d cosθ+φ2(θ)+φ3(θ)=2mπ  for the constructive interference.  So this is your

resonance condition now. So this is the transverse resonance condition. And what is m here?

So m is a integer. So m will be 0, 1, 2, 3, and so on. So only integral values will go and that

means there are certain, only certain values of theta can satisfy this transverse condition. So

not any angle. So that is the solution that we saw earlier. 

So, with that, we have come to a conclusion here or at least a summary of what we discussed

so far. We started off with a with a understanding of the field, how one could have a solution

and how one could define the electric field, both in x and y direction and then we looked at

what is the condition. The critical angle that is required to have total internal reflection to

keep the light propagating through the waveguide and we also looked at the phase shift that

happens because of this round trip that you have. 



And we defined the guided mode, what is the guided mode here. And that is nothing but a

resonance that we get in the x direction, defined by the k x here and we also saw what are all

the phase shifts that has going to be there because of the reflection and in addition to the

round trip phase shift and the interface phase shift you will get a resonant condition that is

represented here. 

So with this is condition we should know whether a particular injection at a certain angle is

going to give us a propagating mode or not. So with this, we are having some understanding

of the requirements coming from the resonance condition in a x direction while you have a

clean propagation along z-direction defined by beta. So in the following lecture we will look

at how we can elaborate this to electrical and magnetic field and also we will look at the wave

equations for this. Thank you very much.


