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Optical Axes

Hello  everyone,  let  us  continue  with  discussion  on  the  anisotropic  medium.  So,  so  far  we

understood what are the implication of having anisotropy. So, how the dielectric constant the

susceptibility influences light propagation. Let us now look at how one can utilize this first of all

but  before understanding how one can could utilize  it,  let  us look at  some of the important

concepts in defining the optical axes and light propagation in this anisotropic medium.

So, the way that we do this is by taking the crystal, the material crystal and then defining the

axes. So, the coordinate system that we all are comfortable with the Cartesian coordinate system

x, y, z, so, it is three dimensional space. And then we are going to convert that into something

optical. So, when you move along z, when you move along x and when you move along y. So,

how the optical constant of this material is going to change. So, by definition we saw anisotropy.

So, that means the material is not uniform with respect to space. So, there could be change in the

refractive index when you go along x or when you go along y.

So, based on the direction of propagation your light is going to experience a difference. So, we

need to understand how to define this optical axes. So, we know simple coordinate system but

then how do we translate that into optical axes and understand the implication of those optical

axes  on the  light  propagation.  So,  particularly  we will  look at  how the  polarization  will  be

affected and if a light has mixed polarization what will happen to that propagating light. So,

those are the things that we are going to look at in this section. 
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So, let us go back and then look at how we can understand this. So, we need to define the optical

axes of the material. So, a simple system is something that we all know of this z can define this

as x and this as y. So, when we say anisotropy, the anisotropy can be of different kind. So,

anisotropy just tells us that there is some direction dependent property change. So, that is all we

understand, but in which direction we are, we cannot say. For example, you could have a system

where nx and ny are equal but it is not equal to nz let us say. 

So, in this particular case the material is anisotropic by definition it is anisotropic the reason for

that is not all three are same. So, when you say isotropic this is what isotropic means but then

this is anisotropic by definition, but then if a light is propagating along z, along the z direction

here, if the light is propagating through this axis that means your electric field is between x and

y. So, if it is propagating through z, your field is between x and y, x and y plane. 

But when light is propagating through this particular medium by definition it is anisotropy but

then when the light is put along z axis it will not feel anisotropy at all. The reason for that is your

refractive index along x and y. So, that is where your electric fields are going to be distributed

between x and y. So, that electric field will not see any difference. So, the light will feel this

medium as if it is isotropic. So, it is very important to understand the situation where the material

anisotropy will affect the light propagation. 



So, you need to define the direction and so on that is why defining optical axes are different. So,

the moment I said okay nx and y is equal. So, the light that is propagating along z direction will

not have any anisotropy effect. But then the moment I said x and y, it is in x, y plane then you

would have already guessed that  the  polarization  of  light  becomes  very important  here.  So,

whether the light is Ex polarized or Ey polarized, in this particular case it does not really matter

because nx equals ny. 

So,  let  us take a  scenario where nx is  not equal to ny in  this  case you will  the light  that  is

propagating will  experience anisotropy. So, normally we define this through giving principle

axes. So, let us look at what that is. So, optical axes, what is optical axes of a crystal. So, what is

this? So, optical axes of a crystal is nothing but a unique axis, it is unique axis in a crystal along

which wave can propagate with a refractive index wherein with an index of refraction that is very

important that is independent, independent of its polarization direction. So, this is how we define

optical axes of a crystal. 

So, optical axes of a crystal is a unique axis. So, it is, it has to be unique axis in a crystal along

which the wave can propagate. So, the wave can propagate with an index that is independent of

its polarization direction. So, this is how we define an optical axes. So, we cannot randomly

choose  any  orientation,  that  is  a  big  difference  between  choosing  a  coordinate  system  to

represent a crystal. So, when you take a crystal, so you take all these atoms here and perhaps and

you will use the position of this atoms and then the orientation in order to define whether this is

x, y and this is z direction and so on.

So, this is rather physical in nature but when it comes to optical axes our definition is slightly

different, it is not any axis, it is a unique axis that has an index of refraction or refractive index is

independent of the polarization of light that is propagating through and when we define this we

have different axes, you have three systems here x, y and z and if you have only one distinct

principle index let us say.

So,  we  call  that  uniaxial  crystals.  So,  what  is  uniaxial  crystal,  you  only  have  one  distinct

principle axis or principle index let us say. So, principle index among three principle axes. So, it

has  only  one distinctive  principle  axis  we call  this  as  uniaxial  crystal  only  one.  So,  this  is

material is still anisotropic, any anisotropic crystal, again I should say an anisotropic crystal only

one distinct principle axis principle index among three principle axes.



So, this is how we can define a uniaxial crystal. So, you do not have distinct indices in other

directions. So, normally this unique direction the principle axis we take z as the unique principle

axis, normally z is represented as a unique principle axis. So, now let us look at once we given

unique axis z the identical principle indices of the refractive refraction they are called ordinary

and extraordinary. So, once we have given define this z as the principle axis we can now define

the other.
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So, now let us look at nx now ny and nz. So, nz what we call the extraordinary index, this is

extraordinary index, both nx and ny we call this as ordinary index. So, we can call this as no and



this is ne. So, the crystal will have positive uni-axis, this is positive uniaxial,  we call  this as

positive uniaxial if ne is greater than no; we call this as negative uniaxial if ne is less than no.

So, based on the refractive index along the principle axis here that is z, you can define either it is

positive uniaxial or negative unique axial. So, here you have to go back and look at the definition

here there is only one distinct principle index here, there is only one that is different from the

other because nx and ny are equal let us say in this case, only nz  is different.

So, the ordinary and extraordinary here is reasonably easy to understand but there are crystals

where we could have three distinct indices. So, nx, ny and nz all are different. So, then life is

going to be even more interesting. So, you have all these unique coordinates here. So, then we

call that as biaxial crystal. So, in uniaxial we only had one unique principle axis, in biaxial we

have three distinct. So, you have three distinct indices of refraction.

And out of this we have two optical axes and then we have one principle axis. So, that is z and I

know none of these two will coincide with any of the other principle axes. So, that is what this

biaxial crystal are about. So, they are all unique in nature. So, once we have this ordinary and

extraordinary planes that we defined we can also understand, try to understand how light would

propagate in this coordinate system. So, let us try to understand, we call those as ordinary and

extraordinary waves. 
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So, in a linearly polarized wave, the two normal modes could exist both in ordinary wave or in

extraordinary  wave.  So,  let  us  look  at  what  is  an  ordinary  wave  and  then  we  will  look  at

extraordinary  wave.  So,  ordinary  wave is  nothing  but  the  wave where  the  polarization  it  is

perpendicular to the optical axes.

So, here the polarization is perpendicular to the optical axes. So, this is called an ordinary wave

and we use eo for this. And here the polarization is perpendicular to eo here. So, here this is the

polarization is actually perpendicular to eo. So, this is ee. So, this is your extraordinary wave. And

here the direction of these waves, when we say direction of polarization we primarily mean the e,

the electric field e here and the direction of this D is also very important that we will just shortly

see.

So,  the  easiest  form to  write  this  is  eo is  parallel  to  Do which  is  parallel  to  eo.  So,  for  an

extraordinary wave, so your ee will be parallel to De but not parallel to Ee. So, this is something

that you should try to understand. So, both eo and ee being the unit vector. So, they are nothing

but unit vectors of Do De. 

So, that is why they are perpendicular to the direction of propagation here. So, that is why they

are parallel  all  the  time but  they are perpendicular  to  the propagating  vector  or  propagation

constant, direction of propagation that is k. So, for a uniaxial crystal let us try to map this how

one can understand this let us say this is z and let us say this is y.

So, an ordinary wave. So, this is say x. So, your ordinary wave is here let me pick a different

color.  So,  this  is  your  ordinary  wave  that  is  having  an  angle  𝝓 and  then  you  have  an

extraordinary wave that is your c and this has an angle 𝝧  to this and we all know that it is the

propagation direction k here and this angle is again  𝝧   and this is perpendicular, this angle

which is between this is nothing but again 𝝓. So, this is 𝝓 let me take this out, this is 𝝓. 

So, this is for a uniaxial crystal with the optical axes z. so, this is nothing but uniaxial crystal

with  optical  axes  along  z.  So,  now the  unit  vector  eo as  you  can  see,  you  can  write  it  as

eo=
1

sin(ϴ )
k̂ ẑ. So, that is hat and we all know one can write at this way. So, both the ordinary

and so this is extraordinary, ordinary and extraordinary wave can be found if both k and the



optical axes are known. So, if the k and if the direction the optical axes then we should be able to

find ee and eo . So, that is rather straight forward. 
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So, let us look at little bit more here you can use this to understand the two waves here. So let us

take a plane. So, this is your optical axes z here and then you have another for ordinary optical

axes z. So, we have O wave let us say this is E wave. So, now for O wave so, this is, so E is

parallel to D but then perpendicular to here and it makes an angle 𝝧 and this is your k and this is

our H.



And then if you look at the extraordinary wave the direction of propagation is all fine this is

again the same, but then the electric field is in this way and you can see D is not parallel. So, it

has a certain angle to it. So, extraordinary wave has a vector D that is normal to k. So, this is the

D  is  normal  to  k  and  lies  in  k-z  plane  but  H-E  is  not  parallel  to  D  in  a  extraordinary

configuration. In ordinary wave configuration both E and D are parallel and H is perpendicular to

your k.

So, that is something that we should keep in mind when we are talking about ordinary and

extraordinary waves in uniaxial crystal. So, let us move on and then see what happens if you

have a more interesting biaxial crystals or the refractive index of nx and ny, that we saw here  are

equal but then let us look at situation where you have three different refractive indices.
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So, we call that as double refraction. So, let us look at material where you have two modes or

two different refractive indexes. So, we call that as material with birefringence. So, birefringent

material. So, birefringence is nothing but it is an anisotropic medium that supports two distinct

axes where you could have two different phase velocities for example.

So, if the light is moving in x and y, so you have nx and ny. So, you have nx is not equal to ny. So,

this will eventually result in let us say speed of light is going to be different here. So, n over n x

and n over ny now. So, because of these two different phase velocities you have two different

refractive indices which causes two refracted waves and the polarization of your electric field

whether you are in Ex or Ey that we discussed earlier will have a very strong interaction and

effect on this wave propagation. This effect of having two refraction, it is called birefringence or

you call it as double refraction.

So, either you call it as birefringence or double refraction both are necessarily the same. So, now

let us look at the field vectors that we introduced in anisotropic medium. So, we can take D  E

this  direction.  So,  light  propagating  here.  So,  the  pointing  vector  S  is  here  and  then  the

perpendicular is H and B. So, this is ordinary configuration. So, why we call it as ordinary? The

propagation direction is where the wave is propagating through. So, k is the propagation here S is

the pointing vector, where the energy is going. 

So, let us look at the extraordinary k’s here. So, this is k. So, this is D and you have H and B will

not have an effect but we already know from our earlier understanding E and D are not going to



be parallel. So, you will have a certain angle to your E. So, they are not going to be the same

direction. So, because we have E having not aligned with the principle axis here what you expect

to see, so this is O. 

So, what you expect to see is your k, or sorry your pointing vector will have again an angle alpha

with respect to the direction of propagation. So, now you can see the direction of propagation is

along this k, in other words you can also call this as z if that is giving you some imagination

here. So, the direction of propagation is along this z but then look at the energy. So, the energy is

not flowing in the direction of propagation.

So,  the  energy  is  now propagating  at  a  certain  angle  alpha,  it  is  deviating  from the  actual

propagation direction. So, this is something very interesting and this could give rise to some

interesting application. So, one can exploit this angle with respect to your principle axis to create

polarization dependent propagation.  So, let  us look at what that is,  if the electric field of an

extraordinary wave is not parallel to the principle axis, if it is not, its pointing vector will not be

parallel to its propagation direction that is what we are trying to say.

So, the energy is  going to go away from the direction of its  wave front propagation.  So, to

summarize this the energy flows away from the direction of its wave front propagation. So, these

phenomena of moving away from the direction of propagation is called spatial walk off, spatial

beam walk off or a spatial walk off, because it is moving away.

So, if this particular separation happens in an anisotropic crystal then the optical waves will split

into two different beams one of the, one in along the propagation direction one coming out at a

certain angle alpha. So, what will be that alpha is the question here. So, let us look at how one

can arrive at this particular alpha again I will go to this similar to what we saw in for the uniaxial

crystal let us look at the spatial walk off in this birefringent material.
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So, we can take this as x, y plane, so, you have z. So, this is your ne, in this case ne is less than no

let us say and we have extraordinary here and De here and it has as I mentioned. So, here we

have  So and this is Se. So, ke and ko are all same. So, they are in the same line. So, this is nothing

but 𝝧 that we have and this is our 𝞪. So, the same thing here this is 𝝧 and this is 𝞪 and the angle

between this no that is what we have and our e is 𝟁e and here this angle that we have is 𝟁 same

thing and this is nothing but your Do which is parallel to Eo.

So, this is the condition when the extraordinary refractive index is less than no. So, if we take

another scenario where your no is less than ne. so, the positive and negative uniaxial crystal we



saw  that.  So,  here  the  situation  slightly  changes  x,  y  plane  here  again  you  have  z  and

extraordinary is here and then we have Se and then So. So, here ko ke along the same line. 

So, here this is  𝝧 and this angle now is  𝞪 and this is nothing but  𝟁e. So, now since we have

moved this way you have De and then we have ee again same thing. So, 𝟁e here. So, this is 𝝧 and

then this is 𝞪 and here Do parallel to Eo . So, this is positive and negative crystal planes that you

can have whether it is ne is greater or no is greater. So, this gives us how our electric field is

oriented with respect to the crystals that we talked about now one can actually find the walk-off.

So, the angle 𝞪 between Se and k. So, Se and k which is defined as 𝞪. So, that alpha. So, this is

angle between Se and k. So, alpha is nothing but 𝟁e - 𝝧. So, this is what we call walk off angle

we saw this  𝞪 here.  So,  how far  this  energy is  going to  deviate  from where you from the

propagation direction. So, that is our 𝞪. So, 𝞪 is also angle between ee and De. So, 𝞪 is nothing

but angle between De and ee.

So, let us look at what this actual 𝞪 is. So, this is nothing but α= tan−1
[
no
2

ne
2 . tanϴ]−ϴ. So, your

𝟁e =  tan−1
[
no
2

ne
2 . tanϴ].  So, let me write it again tan theta. So, this should give us how far the

spatial walk off will be. So, why this is interesting, why are we interested in understanding this

deviation we can actually  exploit  this  difference in the propagation direction for polarization

splitting. 
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One interesting application is so polarization beam splitter. So, what a simple block diagram

would be. So, I have waves that are polarized in a certain way and when I go through this based

on the polar, the angle at which I hit I could have a light that is passing through that is the

ordinary. So, that is So and then I could also have a light that is coming out that is Se. So, you will

have this splitting of this.

So, this is the polarization beam splitter, at what angle it is going out is basically defined by the

alpha  that  we just  saw.  So,  it  has  to  move  a  certain  distance  L  in  order  to  do  this  spatial

movement but based on the length you can spatially segregate these two waves separately. So,

this  is  used  in  lot  of  quantum  photonics  implementation  of  lot  of  gates  and  information

processing where you want to take a photon and then you want to split it.

So, you have a bunch of photons coming in with a certain polarization then you want to split it.

So, the how do we split it is by using this particular technique of spatial splitting and the wave

fronts are coming here and in this case it will be aligned in plane and in this case maybe I should

put it like this and like this. So, vertically aligned and also horizontally aligned. So, you can have

waves like this. So, there are two polarization coming in and you can split this polarization based

on this.

So, how far you can split them, let us say d is the distance between the two waves and the

distance between or let us say beam separation is nothing but  d=l tan α  here. So, if you want

them to be separated reasonably far enough then you have to increase the interaction length. So,



if you increase the length of interaction we should be able to separate the two polarization. So,

you will get this polarization here and get this polarization here.

So, this is how you can exploit the property of this anisotropic crystals for multiple application.

There are few specific crystals and geometries one can use based on the material. So, you can

you must have read something called Wollaston prism is one, Rochon prism and then the other

one is some more famous Glan-Thompson prism.

So, all these prisms configurations actually split the polarization, for example, the WP, it is a

prism configuration like this. So, where you will get an ordinary wave here and extraordinary

wave like this and then in the other configuration again you would have ordinary wave here and

then the extraordinary wave here and in Glan-Thompson configuration perhaps you must have

done this in introduction to photonics or optics courses.

So, you have very large difference. So, this is ordinary and this is extraordinary. So, this is Glan-

Thompson at the bottom, then you have Rochon and then you have Wollaston. So, you can see

here why Glan-Thompson is much popular, the reason for it is I know there is 90 degree shift in

the direction  of propagation.  So, it  is  orthogonal.  So,  when you are putting a beam splitter,

polarization beam splitter it works reasonably well when you are organizing your optics.

So, here you have to rely on the distance. So, you have to put your detector or next optics far

away to have the required spatial separation, but in a Glan-Thompson prism it is much simpler

because it is inherent to it to divide the light and divide the polarization orthogonally. So, one

can use this beam walk-off technique or phenomena in order to split the beam and we saw what

affects  the splitting,  it  is primarily the difference in the ordinary and extraordinary refractive

index.

So, the larger the difference,  the better  your splitting angle is and for a compact device you

should be able to have larger walk-off. So, with that we came to an end to this particular topic of

understanding anisotropy in materials and how one can understand this anisotropy and use this

anisotropy for our own good, various interesting application one can develop but that is not the

end.

So, we are going to use this in our integrated optical waveguides and devices an exploit these

properties. So, right now we only saw the passive properties. So, once you bring in the electro-



optic properties of this material it becomes even more interesting which is something we will

discuss later on in the other sections of this course. Thank you very much for listening.


