Advanced IOT Applications Dr. T V Prabhakar Department of Electrical Systems Engineering Indian Institute of Science, Bangalore

Lecture – 07 Localization using IMU Sensors – III

Now let us look at the last paper in this article and this is the pedestrian stride length estimation from IMU measurements and artificial neural network based algorithm. So, you can see that very very active area of research trying to get stride length estimation.

So, I would say exciting four papers; read them thoroughly, understand them well and then you would perhaps also be at exactly the point where the needle has stopped with respect to the state of art.

So, what do these papers do? This paper says, it puts forward a stride length estimation algorithm based on back propagation artificial neural network based system using a consumer grade initial measurement unit; that is the same one that most phones have.

So, any time you talk about pedestrian dead reckoning there are four phases; they look at step detection, step or stride length estimation, heading estimation and navigation results update.

So these are the four basic steps in any of your application that you are looking at in localization without GPS topic; you may have to do these four steps when you work with IMUs.

Step detection algorithms include zero crossing method, peak detection method and autocorrelation method. Stride length estimation is complex because there are variety of motion patterns during walking or running, patterns including walking; walking slowly, walking normally, walking rapidly, running, texting mode, walking mode and all that which we already spoke about.

Now, this is also important; why your Weinberg expression is not so good this is actually telling you why. And I discussed this already once with you; PDR is related not only to the number of steps, but also the step length. This differs greatly among individuals and is related to the walking speed; we mentioned this already. Step length can vary nearly 40 percent among pedestrians walking; at the same speed and up to 50 percent throughout the range of walking patterns of an individual; within the individual itself there can be a variation and 40 percent among pedestrians walking at the same speed this are speed this is important.

So, getting to a very accurate K is known simple way; there is no simple way of getting to K which is like a constant which indeed is the struggle. People have spoken about the simplest approach of step length; take a constant model for one person, but that would not work because the model cannot adapt well; whenever there is a change in pace. Linear relationship between step length and pedestrian height some people tried that, but the variation of step length during walking has something that was not considered.

Yang and Li another set of authors identified closed relationship between frequency and step length and proposed an algorithm to estimate the step length based on step frequency in some other work. The authors of paper then adapted this linear model for PDR. So, a whole bunch of work on how to get to the step length are all referenced in this.

look at the sentence, taking into account step intervals acceleration variance and inclination. The step length can be modeled by multivariate equation; a non-linear model with only one coefficient was proposed to estimate step length; however, this models coefficient may vary between different pedestrians. So, this is indeed the crux of the problem.

So, really one cannot go with all the existing methods at least that is what this paper seem to claim.

And this paper also talks about how to collect data because they have to get humongous amount of data before they actually conclude on anything about estimating stride length accurately. So, they also I suppose connect the IMU on the foot because of its ability to give good signatures. And but their data is collected from just 13 test subjects that is the problem; it is still very weak because 13 is no number; it should be perhaps 130000 to arrive at very good conclusion; particularly if you are doing any neural network based systems where you do it iteratively. So, so this is really the issue.

Fully Manage Million Maria	desire.	A REAL PROPERTY AND A REAL	and the second se	and the second	-	and a
tat view window mep						limmer + 1 Q
					Teeth	Till & Spe Common
C. C	100711	Normally	4,80	-2.11	1.58	
	See 1	www.maay	4,96	-1.86	1.62	
20	No. of Concession, Name	Davidha	8.56	-3.12	1.82	
		Rapidiy	9.39	-3.11	1.87	
100		Charles	2.44	-1.28	1.36	2
		Stowity	2.19	-1.02	1.33	
	1 Status	Burnette	12.06	-6.88	2.07	2
	Card also - in the second second	Kunning	11.18	-6.51	2.00	
1 1 1	1 1 1	used to estimat	e the stride length	[14, 15, 25-27].		
N NE U			$L = K \times \sqrt[4]{Acc_{max}}$	x - Accomino	(2)

So, you can see that the toe is off; then you have heel strike your toe is off, you have basically the same thing of heel strike and stands.

Heel strike and stance these are the two things that they seem to be doing. And again you are back to the same expression which is an empirical non-linear model which is used for estimating the stride length. This is the famous Weinberg expression again back here. Of course, there is no n here which is this is for a single step I suppose because there is no n or n is equal to 1 you can say. This model seems simple because it is only one coefficient and but in order to find the maximum and minimum vertical axis need stride; initial alignment must be completed and that is where the whole difficulty is.

View Window Help			
2000-1000000000000000000000000000000000		Jummie (*	
/# A 0 - + m - 80	Teen	HURSON Co	
the test, the x-axis corresponds to forward direction while y- and z-axes correspond to leftward direction, and to the direction given by the cross product of x and y, respectively. Figure 4 shows how the data of α_x , α_y , and α_z changed when one test subject walked normally. It can be seen that α_x , α_y , and α_z show certain cyclical characteristics, especially in the case of α_z due to its regular change with foot up-and-down movements [10]; this con- forms to the characteristics of vertical acceleration discussed in papers [22, 23]. However, to avoid the effects of sensor tilt and body swing, the magnitude of the acceleration but not the acceleration component is used for stride length estimation as shown in (1). This is because the acceleration magnitude is a robust feature of the footstep and is insensitive to the excitation of the acceleration magnitude	of test subject number 1 at normal walking speed. In order to get the value of K of test subject number we examined the eight sets of data shown in Table 1, whe Acc _{max,m} is the mean value of maximum vertical acceleration in the same walking pattern, Acc _{min,m} is the mean value of minimum vertical acceleration, and L_m denotes the mean value of stride length. In each walking pattern, the test subject walked twice, and two sets of data were collected. According to the data, we can find the nonlinear mod with the lowest sum of square errors of test subject number as follows: $L \approx 0.55 \times \sqrt{Acc_{max} - Acc_{min}}$. (1)	l, re nn of in ct el -1 3)	
orientation of the sensor unit [24, 25].	stride length [9, 10, 24, 29]; this model is shown as follows:		
$a = \sqrt{a_x^2 + a_y^2 + a_z^2},$ (1)	$L = a \times f + b$, (4)	4)	
where <i>a</i> is the acceleration magnitude. Use of the acceleration component for stride analysis is illustrated in Figure 5, where an obvious cyclical characteris- tic can be seen. It is clear that each walking cycle has a period	where f is the walking frequency and a and b are coefficients. It must be pointed out that the parameters of this model may vary between pedestrians. As shown in Figure 7, this gives a linear model of test subject number 1:		
with a charn change of periodorm and an approximately			
constant a study consume or waveform, and an approximately constant period, and that the two periods correspond to different phases.	$L = 1.62 \times f - 0.09.$ (1)	5) 1 0 0 1734 1941-0	
reackaget Access Acobast No Vew Window Hep	$L = 1.62 \times f - 0.09$, (1)	5)	
decisities a surge vanage on waterorm, and an approximately constant period, and that the two periods correspond to different phases.	$L = 1.62 \times f - 0.09.$ (1)	5) 6 0 124 10 125 10 125 1	
Instruct a surge constance on wateriorm, and an approximately constant period, and that the two periods correspond to different phases. Were Window Hep More View Window Hep More View Window Hep forms to be characteristics of vertical acceleration discussed in papers [22, 23]. However, to avoid the effects of sensor tilt and body swing, the magnitude of the acceleration but not the acceleration component is used for effects of sensor tilt	$L = 1.62 \times f - 0.09.$ (1) N \sim 0 N	5) CONTRACTOR Tables	
Image of matrix final an approximately constant period, and that the two periods correspond to different phases. Image of the second field of	$L = 1.62 \times f - 0.09$. (1) N $\sim 10^{10}$ According to the data, we can find the nonlinear mod with the lowest sum of square errors of test subject number as follows: $L \approx 0.55 \times \sqrt{Acc_{min} - Acc_{min}}$. (1)	5) 1234 100 100 100 100 100 100 100 10	
enous a surge consider on watching, and an applicatility constant period, and that the two periods correspond to different phases. We Window Hep Come → A Constant Pro- forms to the characteristics of vertical acceleration discussed in papers [22, 23]. However, to avoid the effects of sensor tilt and body swing, the magnitude of the acceleration discussed in papers [22, 23]. However, to avoid the effects of sensor tilt and body swing, the magnitude of the acceleration discussed is a robust feature of the footstep and is insensitive to the orientation of the sensor unit [24, 25].	$L = 1.62 \times f - 0.09$. (f) N $\sim 10^{10}$ Constraints of the data, we can find the nonlinear mod with the lowest sum of square errors of test subject number as follows: $L \approx 0.55 \times \sqrt{Acc_{max} - Acc_{max}}$. (f) The frequency model is also widely chosen to estimate the stride length [9, 10, 24, 29]; this model is shown as follows:	5) 124 0 124 18102 1	
exoting a surpressing of warrents, and an approximately constant period, and that the two periods correspond to different chases.	$L = 1.62 \times f - 0.09.$ (f) N $\sim 10^{10}$ According to the data, we can find the nonlinear mod with the lowest sum of square errors of test subject number as follows: $L = 0.55 \times \sqrt{Acc_{max} - Acc_{min}}$. (f) The frequency model is also widely chosen to estimate th stride length [9, 10, 24, 29]; this model is shown as follows: $L = a \times f + b$, (c)	5) 124 0 124 124152 1441526 1441526 Con 2441526 144156 144156	
exercises a surger consistent in a surger consistent of the periods correspond to different phases. Exercises the period of the period of the periods correspond to different phases. Exercises the period of the	$\label{eq:linear} \begin{split} L &= 1.62 \times f - 0.09. \end{split}$	5) 1234 12400 12400400 * 12400400 * 12400* 1	
The same vange of marcinit, and an approximately constant period, and that the two periods correspond to different chases.	$\label{eq:linear} \begin{split} L &= 1.62 \times f - 0.09, \end{split}$	5) 1230 1240 1240 1240 1440 141 15 15 15 15 15 15 15 15 15 1	

This paper goes on to substitute K as 0.55 and tries to come up with some expression, but miserably says that it is not the right way to do because this is not going to work for several people. Then they propose this back propagation artificial neural network analysis to estimate the pedestrian stride length.

So, what do they do here? As you know any artificial neural network will have basically three layers; an input layer you will have a hidden layer and you will have an output layer.

The inputs layer will only have the inputs to be fed, which is passed to the hidden layer where some kind of nonlinear mapping is done. Further the hidden layer output is passed to the output layer where suitable function gives us a desired result.

So, the output that you actually see will be in this expression nothing, but the y hat or the y cap which you will see out here. And then you will find an expression; you will find a function here essentially these are all non-linear functions and we will look at these functions one by one.

So, let us see this, essentially you have inputs which are to be fed to the input layer, we will have to understand what are the inputs. And then what is the activation function here in the hidden layer? And then we have to also know what is the output layer activation function. So, you need activation function for the hidden and output layers.

So, let us go and see what these activation functions are all about and what it can achieve, so what does a neural network do? It can achieve non-linear mapping between inputs and outputs. It consists of input; hidden and output layers and its weights and thresholds are continuously adjusted to approximate the desired input and output mapping relationship. Now, the active function of the hidden layer is a sigmoid function; you could refer this reference 6. And in fact, there are several such functions; one of the functions is indeed the sigmoid function that they choose; while the output layer is a linear function. So, this is a sigmoid function; the active function of the hidden layer is the sigmoid function, while the output layer is a linear function.

So, let us look at them; what you feed we take five variables this is nicely marked here five variables which may be closely related to the stride length are studied; using data collected from 13 subjects aged 22 to 29.

The variables include mean stride frequencies fstride, maximum acceleration in the walking cycle acc_{max}, acceleration standard deviation sigma acc, mean acceleration acc m and height of the test subjects h. And essentially, they are trying to train, taking these as inputs; train this model recursively and then come up with some output y hat.

Now, what is y hat? y hat being the output is the output of the neural. In this because you are looking at a function output of the BP-ANN function; you have to look at the output layer.

Then what they do? They run this neural network and then they sort of try to correlate the stride length as accurately as possible to ground truth and they have some results appearing here.

So, this paper is also interesting because it applies back propagation neural network; artificial neural network. And this further says how do you calculate the inputs you need, fstride as we discussed. So, you get fstride from the time interval of each walking cycle.

So, essentially this is also saying that you could apply these modern techniques; in order to arrive at very accurate stride length. So, the conclusion of this work is five variables in the walking cycle were used as an input vector to the back propagation artificial neural network. And they say they claim that it is better in performing pedestrian stride length estimation.

File Edit View Insert Act 17-1-0-94 (1) Extract Sensor Values - Audrid HPI -> Rejstuing to the (1) Extract Sensor Values - Audrid HPI -> Rejstuing to the (2) Denrise Sensor Values - filting - (Co.efficients are extra ded. (3) Detect peaks - Step Count (4) Stride leng to estimation (5) Heading - Magnetimeter - AT (5) Heading - Magnetimeter - AT (5) Do this for Texting, Swinging & Running. Do this for Texting, Swinging & Running. (1) Denrise Sensor Values - Audrid HPI -> Rejstuing between the (1) Extract Sensor Values - Audrid HPI -> Rejstuing between the (2) Denrise Sensor Values - Audrid HPI -> Rejstuing between the (5) Heading - Magnetimeter - AT (5) Do this for Texting, Swinging & Running. (1) Do this for Texting Swinging & Running. Source Code - IMU based

So, there are five steps involved in building the application:

• Extract sensor values.

- Filter the sensor values in real time.
- Detect the peaks which in turn gives step detected indication.
- Get the maxima and minima value from the peaks and estimate the stride length.
- Update the distance along the heading information.

So, in a sense this is what you will have to get to put together when you try and prototype your application. Now all of this what we are just seeing now is for one mode essentially right. It could be for texting, swinging and running; You will have to see how to improve this application for other modes as well.

Also please note that we will give you a Barebone code where the core algorithm will not be mentioned. So, you will find in one place insert your code here. So, what you should insert will also be mentioned. So, at exactly that point you will have to write your own code and make a nice application for let us say texting mode.

Thank you.