Transcriber's Name: Juliet Christine A Advanced IOT Applications Dr. T V Prabhakar Department of Electrical Systems Engineering Indian Institute of Science, Bangalore

Lecture – 06 Localization using IMU Sensors – II

Now let's discuss some of the advancements that have taken place in this area and how hot a topic this area of pedometer application is actually all about.

Particularly this estimation of stride length, we should spend some time at least here understand basic equations that are associated with this stride length and then look at the advancements in that area and then move on from there.

Let me point you to some material and essentially these are all text book kind of material for your courses and hopefully you will be able to download them including the IEEE and other related publication papers that are associated literature that is there, you should if you read them you will know where the state of art is so, that is the point.

Let us look at the first paper analog devices.

This is from a application note from analog devices. It says using the ADXL 202 in a pedometer application. So, essentially it is an accelerometer which they are trying to promote, but apart from that it is useful to see what they actually have in mind. This

paper actually gives you that idea of how much the accumulated error can actually be when you do double integration to get to distance. If you do double integration, how integration accumulation errors actually happen is all nicely described in this paper. So, you can download and read it.

I have marked some parts in different color and essentially it is saying that inertial navigation systems use a combination of sensors and all that and dead reckoning where the deviation of position from a known reference or a starting point is determined by integration of acceleration in each axis. And this is a very simple expression, this is nothing but, $1/2at^2$ which and the initial position or which is essentially ut + $(1/2)at^2$ a very well known expression.

So, it is essentially doing this $1/2at^2$ and how at low speed the accuracy of such system over a reasonable length of time is actually very poor. If you consider the accelerometer.

It says the temperature coefficient of ADXL is approximately 2 mg per degree Celsius, a temperature deviation of even 0.5 degree Celsius over 5 minutes would add 1 mg of error more than the desired signal itself right so, that is indeed the problem.

And why it is more than this one, because you can see that the desired signal indeed is 0.944 and here you get 1 mg. So, that is indeed much more than the desired signal. In fact, a change in inclination of the accelerometer of just 0.06 degrees Celsius would be greater than 1 mg so, that indeed is indeed causing the problem. So, this paper is written by this person by name Harvey Weinberg and essentially he comes up with a nice expression which we call the Weinberg expression for estimation of stride length.

So, you recall that I showed you a demonstration of the phone and we said that if you take a phone which has 3 axis accelerometer. The Z acceleration is what we will try to use in all the related expressions. So, when people walk there is a Z axis movement and of the body with each step.

(Refer Slide Time: 06:14)

1. cm	fatteria *
* x0 + m + H0	Teols Fill R Sign Com
AN-602	
at 10 Hz to 20 Hz and then averaged down to 2 Hz to 3 Hz to remove noise. The step detection routine then looks for a change in slope of the Z-axis acceleration. These changes in slope indicate a step.	 <i>n</i> is the number of steps walked. <i>K</i> is a constant for unit conversion (i.e., feet or meters traveled).
Only looking for the change in slope at appropriate times can improve step counting accuracy. Stride frequency tends to change no more than $\pm 15\%$ per step during steady state walking. Looking for the peak only during a time window as predicted by the last few steps $\pm 15\%$ will result in more accurate step counting.	BOUNCE
IMPROVING THE ACCURACY Unfortunately, using a fixed value for stride length will	LEG LEG LEG LEG Figure 1. Vertical Movement of Hip while Walking
always result in a low accuracy system. Stride length (at a given walking speed) can vary as much as ±40% from person to person and depends largely on leg length. Some pedometers ask the user to program their stride length to eliminate most of this error. However, each individual's stride length will vary by up to ±50% depending on how fast one is walking (at low speeds.	This technique has been shown to measure distance walked to within ±8% across a variety of subjects of dif- ferent leg lengths. Close coupling of the accelerometer to the body is important to maintain accuracy. An adap- tive algorithm that "learns" the user's stride characteristics could improve the accuracy significantly.

What actually is happening in the above image is, this is the hip which is of the human and you can see every time there is a right leg you move up and you have the left leg which is placed back. There is a you can assume that the leg is like a lever and such a lever essentially bends exactly at the knee at the knee point and whenever you move this lever flexible lever actually bends at the knee point and that indeed gives a sort of a kick to the accelerator the accelerometer.

(Refer Slide Time: 07:02)

So, essentially this is what the whole idea behind you know the Z axis system you know showing you a sort of a waveform which we discussed previously you get a maximum acceleration and a minimum acceleration essentially happening because of movement of the leg and bending of the knee and therefore, the hip moves up and down and up and down and you can see that all of this is well captured in this nice picture.

So, essentially the stride is nothing, but the movement of this bounce which is shown here. So, if you do you can easily calculate the stride length by this very basic system where bounce is the vertical displacement of the hip. The hip is moving up and down up and down which is the upper body and this hip movement essentially is captured.

And it goes on to come up with an empirical expression of how to calculate the distance. Weinberg in fact, is the person who came up with this expression which says distance is the fourth route of the acceleration maximum a_max that is the peak minus the acceleration minimum times n which is for number of steps that you take, times K which is some constant.

Stride length = $(a_max-a_min)^{1/4} *n*K$

The K is hard to estimate and this can differ from person to person and therefore, one may have to calibrate it for a specific person to ensure that the application that one builds is quite accurate for that particular person.

So, conclusion is that you know you could use dead reckoning to improve positional resolution of the system it is not very useful for long term position measurement although because of all these drifts and other related errors.

Careful examination of the application can often reveal surprisingly simple solution it is your ingenuity on how you want to build applications given the fact that you should not really end up with double integrals and integration accumulation error .

So, let us look at one more paper and let me give you some background of the of this paper see we are trying to do an IOT application and we are looking at localization without GPS as a broad title and we are trying to look at how to use these IMU.

The other paper which we are going to discuss actually says something even more and very specific. It says that why not use IMU s for detection of Parkinson's disease some application on Parkinson's disease. So, you have to look at also that people are already looking at use of IMU s for very specific applications. So, let us turn our attention to this paper it says comparative adaptation of the step detection and step length estimators to a lateral belt worn accelerometer the title appears very general.

But the very first line in the abstract says Parkinson's disease is a neurodegenerative disease as it predominantly alter patient's motor performance and compromises the speed and so on. So, it is actually going into the details.

The reason why this paper is important is because several approaches to detect steps are discussed in this paper.

On looking at the paper we can see that sliding window summing technique is something that is proposed in this paper and there is lot of references to previous work.

Cameras +
Tools Fill & Sign Commen
Peaks and the mean value from every peak to zero crossing point were then detected. IC of right leg was then selected from one peak value and left initial contact was selected from mean value of next peak to zero value. To avoid false prediction, for each detected steps any peak between next 0.30 seconds were discarded.
III. GAT SPEED AND STRIDE LENGTH ESTMATION This section describes three selected step length and gait speed estimation methods. These methods are selected from 6 common methods based on their performance on the proposed sensor fication obtained in a previous study [11]. First 2 methods presented were developed considering the sensor position near L4-L5 position, close to the center of mass (COM) of human body [12]. In method 3, the sensor was placed on the lateral side of waist, the same than our proposed position.
A. Double Pendulum Model The most common approach to measure the average step length is to consider human gait as an inverted pendulum model [12]. Based on this biomechanical model, Zijlstra et al [12] proposed a relationship between the step length and the vertical displacement of the COM of human body $SL_{M1} = 2 \times \sqrt{2hl - h^2}$ (9) where / denotes for the leg length of individual from the pelvis

At the same time the authors also want to propose their own methods and remember this is very specific to the Parkinson's disease application. So, take the basic things and start adapting to very special requirements.

Threshold based approach is one another metho, then there is a sliding window averaging technique algorithm, then gait speed and stride length estimations a bunch of algorithms again there. You look at double pendulum model the most common approach to measure average step length is to consider human gait as an inverted pendulum model. Based on biomechanical model authors propose a relationship between the step length and the vertical displacement of the COM of human body. So, you can see that.

(Refer Slide Time: 12:35)

They talk about the almost the same thing leg length of individual from the pelvis near the COM, COM region to hill and h denotes the vertical displacement of also it is everything around the inverted pendulum the hip pelvis region that is exactly from where the vertical acceleration is being looked at.

So, we talk about the heel strike and stance, essentially 2 phases whenever we walk we will essentially relate to heel strike and stance.

• 1/1 • 0 • • m • 180	Tools Fill & Sgn Cr
a () ($max_{product} = max_{product} = max_{product$

Then there is Weinberg's algorithm which is considered for stride length estimation of a as a function of difference in maximum and minimum vertical acceleration the vertical displacement of the hip during one step. This method does not need any integration and thus avoids drift error, you can see the strength of Weinberg which I also discussed in the previous paper is because the fact that there is no integration error.

So, you have to take the a_max then you have to take the a_min and then you have to keep doing it for every step. Some people adapt even averaging moving averaging of a_max and a_min some of them seem to just take the absolute value absolute value of a_max. So, many methods can exist, you should keep trying these are all variants that you yourself can try once you have the basic code with you and very exciting results can be observed.

K as I mentioned is a calibrating constant and essentially it is a ratio of the mean stride length real stride length that is there with that of the mean stride length that is estimated essentially it is just a ratio.

So, then there are optimal parameters that this authors talk about for step length and other methods.

30 -	275 -	EB														Teo	8 Fil & Sign													
TABLE I. 5 PD patte	Overal1 NTS	. STEP DE	ETECTION PE	RFORMA	NCE FOR 51	OLUNTE	ERS AND	the	other	hand	I, A ₁ , A	A ₂ , and	A3, fol	low the	propos	ed ada	ptation													
	#Steps		SWS	C	ETPD	S	WAT		mous																					
	(r)	#Steps (det)	Recog. error (%)	#Steps (det)	Recog. error (%)	#Steps (det)	Recog. error (%)	an	Table	VI d av	also	shows step le	a com	parison of PD	n betw	een re	al and													
VI	42	43	+2.38	43	+2.38	42	0.00	me	thod C), an	d A.	and a	-0		Panen		- only													
V2	42	41	-2.38	40	-4.76	42	0.00	IIIN	anon c	2 au	u 742.																			
V3	48	48	0.00	44	-8.33	49	+2.08		Resul	ts sh	ow that	t all the	origin	al meth	ods ha	ve a ter	idency													
P1-Off	28	29	+3.57	29	+3.57	28	0.00	to	over-e	stim	ate the	step	length	as wel	as ga	uit spea	d and													
P1-On	25	24	-4.00	24	-4.00	24	-4.00	dis	tances	0	and	0	provid	es inco	onsister	it resu	lts i.e													
P2-Off	20	20	0.00	20	0.00	20	+0.00	ou	erestim	ate t	for one	subiec	and u	nder-es	timate	for the	others													
P2-On	20	16	-20.00	16	-20.00	17	-15.00	0	novid	la sta	101 0110	1 and e	ancister	nt recul	te i e le	In SD	and O.													
P3-Off	36	40	+11.11	38	+5.56	37	+2.78	06	10 ha	e the	higha	t norfo	manad	in resul	as i.e it	N SD	ind Of													
P3-On	36	35	-2.78	34	-5.56	35	-2.78	an	1 0 ₆ na	s un	ingue	si perio	manec																	
P4-Off	50	49	-2.00	49	-2.00	49	-2.00	TA	BLE V.	REAL	AND AN	TICIPATE	D AVERAG	E STEP L	ENGTH DO	RING TES	T PHASE													
P4-On	32	47	+46.88	41	+28.13	39	+21.88	OF	EALTHY	PERS	ONS																			
								Sub		Real	011	012	A	0,	A ₂	0,	A ₁													
TABLE II.	ERROS	COMPA	RISONS BETW	VEEN 3 M	ETHODS			1.00	Dist(m	0.64	0.64	0.59	0.66	0.68	0.67	0.62	0.63													
Meth	od	mean e	rror n	iean abs	(error)	SD (e	TTOT)	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	VI	RMSE		0.0960	50 0.1076	0.0706	0.0561	0.0514	0.0296	0.0266
SW	5	-0.02	46	0.05	0.0500		.0.0768		(SD)	0.07	(0.9730)	(0.0973)	(0.1092)	(0.0445)	(0.0401)	(0.0242)	(0.0246)													
CET	D	-0.20	43	0.35	86	0.33	397	1	Dist(m	0.62	0.50	0.45	0.63	0.64	0.64	0.63	0.63													
SWA	T	0.036	59	0.04	04	0.0	347	V2	RMSE		0.1403	0.1827	0.0394	0.0382	0.0386	0.0232	0.0232													
Berner Stationer	-							-	(SD)	0.53	(0.0773)	0.0773	(0.1999)	(0.0309)	(0.0302)	(0.0212)	(0.0211)													
Table	III o	omnare	es the an	ticinate	ed distar	ice est	timated	1.0	Distin	0.53	0.73	0.54	0.48	0.57	0.57	0.57	0.55													
against t	he real	listano	e durine to	est case	ie the	second	nart of	13	KMSE		0.5033	0.0597	0.2261	0.4508	0.0579	0.0499	0.0495													
A second seco	ie rear c	hashthe	narconc	and a	ditionall	v hath	valuar	<u></u>	(SD)		(0.2280)	10.0607	(0.2253)	(0.1620)	(0.03/9)	(0.0325)	(0.0332)													
the walk	by the			and the second sec		TA DAUGH	T STATES N		17 16 2	10.040	ACL 10:04	715.0 15.	MB 2d2	1271271 (242)	matha															
inguiner c		10 - Con 1 - Con 1	1. 95.3450.00500	an/1 a/	iditionali	v. both	values		It is a		ad that	the h	th ada	ntation	matha	1 4 -	-1 A													

And then they have some results associated with this particular application which essentially you should look at in for the Parkinson's disease case.

	100	0.0.0	412423	-												_	7021
- storic	15.0	0 1 0		9 10 1	1472												Cus
10	= + 2	175 -	10													Tools	Fil & S
-	SILS		0.0246	100	0.0500	nony	0.07	88		(SD)	(0.9730)	0.0973)(0.1092)	(0.0445)	(0.0401)	(0.0242)(0.0242)(0.0000)	0.0246)
-	CETPD		0.0240	-	0.3586		0.07	07		Dist(m) 0.6.	0.50	0.45	0.63	0.64	0.64	0.63	0.63
-	SWAT		0.0360		0.0404	2	0.03	47	V2	RMSE	0.1403	0.1827	0.0394	0.0382	0.0386	0.0232	0.0232
-		-	4.4242	-			0100			(SD)	(0.0773)	0.0773)(0.1999)	(0.0309)	(0.0302)	(0.0212)((0.0211)
- 34	Table I	II com	manae	the ant	ininated	dietar	noa act	instad		Dist(m) 0.5.	8 0.73	0.54	0.48	0.57	0.57	0.57	0.53
	ratic 1	n com	ipares	the diff	reipated	dista	ice est	mateu	V3	RMSE	0.3033	0.0597	0.2261	0.4508	0.0579	0.0499	1.0495
agai	inst the i	cal disi	tance di	iring tes	a case, 1	.e. me	second	part of		(SD)	(0.2280))	0.0607)(0.2253)	(0.1620)	(0.0379)	(0.0325)(
or ntio)N Vei ons uri	the tot cipated and OF nberg stant K ng their	al wall distance F state algorith was cal OFF s	k. Tabl e travel d. The hm wa culated state and	e IV a led by I original s impl for eac d implei	nd, add lso con PD patie (O ₂) ar emented h patien mented	npares ents bot nd adap d here it on a in both	y, both the re th durin tation (Calil training of the	values al and g their (A ₂) of bration g phase ir OFF	perf their TAB OF PI	It is seen forms bet r original LE VL REA DPATIENTS	ned that ter both methods	the boi for ave O ₁ and KIPATED	h ada rage s O ₃ . AVERAG	ptation step le æstep L	methoungth an	d A ₁ an d speed RDNG TEST	d A ₃ , than PHASE
for anti- ON Wei con- duri and	the tot cipated and OF nberg stant K ng their ON stat	al wall distance F state algorith was cal OFF s tes for r	k. Tabl e travel d. The hm wa culated state and patient	e IV a led by I original s impl for eac d implei P1 and	nd, add lso con PD patie (O ₂) ar emented h patien mented P2 and	npares ents bot nd adap d here at on a in both only in	y, both the re- th durin tration (c. Calil training of the ON sta	values al and g their (A ₂) of bration phase ir OFF ttes for	perf their TAB OF PI	It is seen forms bet r original LE VI REA DPATIENTS Subjects	ned that ter both methods L AND ANT Real (m)	the boi for ave O ₁ and KIPATED	h ada rtage s O ₃ . AVERAG	ptation step le Æ STEP L	Est(m)	d A ₁ an id speed RING TEST A ₂	d A ₃ , than PHASE
for anti- ON Wei cons duri and pati-	the tot cipated and OF nberg stant K ng their ON stat ents P3	al wall distance F state algorith was cal OFF s tes for p and P-	k. Tabl e travel d. The hm wa culated state and patient ! 4. As v	e IV a led by I original s impl for eac d impler P1 and we did i	nd, add lso con PD patie (O ₂) ar emented h patien mented P2 and o not have	itionall npares ents bot id adap d here at on a in both only in e the b	y, both the re- th durin otation (c. Calil training of the ON sta eg leng	values al and g their (A ₂) of bration phase ir OFF ites for th and	perf their TAB OF PI	It is seen orms bet r original LE VI REA DPATIENTS Subjects	ned that ter both methods L AND ANT Real (m)	the boi for ave O ₁ and KIPATED Est.(w	h ada rage s O ₃ . AVERAC O ₂) em	ptation step le # STEP L or (%)	ENGIH DU	d A ₁ an d speed RING TEST A ₂ error (%	d A ₃ , than PHASE
for anti- ON Wei con- duri and pati- accu	the tota cipated and OF nberg stant K ng their ON stat ents P3 irate st	al wall distance F state algorith was cal OFF s tes for p and P- ep lens	k. Tabl e travel d. The hm wa culated state and patient 1 4. As v gth infi	e IV a led by I original s impl for eac d implet P1 and ve did n ormation	nd, add lso con PD patie (O ₂) ar emented h patien mented P2 and o not have n of th	ationall npares ents both ad adap d here at on a in both only in e the b ne PD	y, both the re- th durin otation (c. Calil training of the ON sta eg leng patien	values al and g their (A ₂) of bration g phase ir OFF ttes for th and ts, the	perf their TAB OF PI	It is seen orms bet r original LE VL REA DPATIENTS Subjects P1-Off	ned that ter both methods L AND ANT Real (m) 0.5357	the boi for ave O ₁ and ICIPATED Est.(w 0.550	h ada rage s O ₃ . AVERAC O ₂) em 7 .	ptation step le E STEP L or (%) 2.80	ENGTH DU ESST(m) 0.5500	d A ₁ an d speed RING TEST A ₂ error (% 2.67	d A ₃ , than PHASE
for anti- ON Wei cons duri and pati- accu rem	the tot cipated and OF nberg stant K ng their ON stat ents P3 trate st aining n	al wall distance F state algorith was cal OFF s tes for p and P- ep leng nethods	k. Tabl e travel d. The hm wa lculated state and patient l 4. As v gth info	e IV a led by I original for eac d implei P1 and ve did i ormation not be ta	nd, add lso con PD patie (O ₂) ar emented h patien mented P2 and o not have n of th isted.	itionall inpares ints bot ad adap d here at on a in both only in e the h ne PD	y, both the re- th durin otation (Calil training of the ON sta eg leng patien	values al and g their (A ₂) of pration g phase ir OFF ites for th and ts, the	perf their TAB OF PI	It is seen orms bet r original LE VL RE# DPATIENTS Subjects P1-Off P1-Off P1-ON	ned that ter both methods L AND ANT Real (m) 0.5357 0.6250	the boi for ave O ₁ and KIPATED Est.(w 0.550 0.610	h ada rage s O ₃ . AVERAO O ₂) em 7 : 1 -	ptation step le # STEP L or (%) 2.80 2.33	metho ngth an ENGTH DU Est.(m) 0.5500 0.6175	d A ₁ and d speed RING TEST A ₂ error (% 2.67 -1.20	d A ₃ , than PHASE
for anti- ON Wei duri and pati- accu rem	the tot cipated and OF nberg stant K oN stat ents P3 irate st aining n	al wall distance F state algorith was cal OFF s tes for p and P- ep leng nethods	k. Tabl e travel d. The hm wa leulated tate and patient l 4. As v gth info could r	e IV a led by I original for eac d imple P1 and ve did n ormation not be ta	nd, add lso con PD patie (O ₂) ar emented h patien mented P2 and o not have n of th isted.	ationall npares ents bot ad adap d here at on a in both only in e the 1 he PD	y, both the re th durin training of the ON sta eg leng patien	values al and g their (A ₂) of phase ir OFF ites for th and ts, the	perf their TAB OF PI	It is seen forms bet r original LE VL REA DPATIENTS Subjects P1-Off P1-ON P2-Off	ned that ter both methods L AND AND Real (m) 0.5357 0.6250 0.7500	the bo for ava O ₁ and KIPATED Est.(w 0.650 0.610 0.747	h ada trage s O ₃ . AVERAC O ₂) em 7 3 4 - 5 4	ptation step le # STEP L or (%) 2.80 2.33 0.33	methoo ngth an ENGTH DU Est.(m) 0.5500 0.6175 0.7475	d A ₁ an d speed RING TEST A ₂ error (* -1.20 -0.33	d A ₃ , than PHASE
for anti- ON Wei cons duri and pati- accu rem TAB	the tot cipated and OF nberg stant K ong their ON stat ents P3 irate st aining n LE III.	al wall distance F state algorith was cal OFF s tes for p and P- ep leng nethods REAL AL	k. Tabl e travel d. The hm wa loulated state and patient l 4. As v gth info s could n	e IV a led by I original s impl for eac d impler P1 and we did n ormation tot be ta	Iso con PD patie (O ₂) ar emented h patien mented P2 and o not have n of the isted. DISTANC	itionall npares ents both id adap d here it on a in both only in e the b ne PD	y, both the re th durin training of the ON sta eg leng patien	values al and g their (A ₂) of bration phase ir OFF ites for th and ts, the	perf their TAB OF PI	It is seen orms bet r original LE VI RED DATIENTS Subjects P1-Off P1-Off P1-ON P2-Off P2-ON	ned that ter both methods <i>L</i> AND ANT Real (m) 0.5357 0.6250 0.7500 0.8824	the bo for ava O ₁ and KIPATED Est.(w 0.550 0.610 0.747 0.758	h ada trage s O ₃ . AVERAC O ₂) em 7 : 1 4 - 5 - 4 2 -1	ptation step le # STEP L (%) 2.80 2.33 0.33 14.07	methou ngth an ENGTH DU Est.(m) 0.5500 0.6175 0.7475 1.0312	d A ₁ an d speed RING TEST A ₂ error (% 2.67 -1.20 -0.33 16.87	d A ₃ , than PHASE
for anti- ON Wei cons duri and pati- accu rem TAB ORIG	the tot cipated and OF nberg stant K ong their ON stat ents P3 irate st aining n LE III. I INAL (O _x) Real	al wall distance F state algorith was cal OFF s tes for p and P- ep leng nethods REAL AD AND THE	k. Tabl e travel d. The hm wa leulated state and patient l 4. As v gth infi s could i ND ANTI ER ADAPT	e IV a led by I original s imple for eac d imple P1 and ve did n ormation tot be ta CIPATED A	Iso con PD patie (O ₂) ar emented h patien mented P2 and not havin n of th isted. DISTANC EITHODS I	itionall npares ents bot id adap d here at on a in both only in e the l in PD	y, both the re th durin training of the ON sta g leng patien	values al and g their (A ₂) of bration phase ir OFF ttes for th and ts, the av THE RSONS	perf their TAB OF PI	It is seen orms bet r original LE VI RE- DPATIENTS Subjects P1-Off P1-Off P1-ON P2-Off P2-ON P3-Off	ned that ter both methods L AND ANT Real (m) 0.5357 0.6250 0.7500 0.8824 0.4297	the bo for ava O ₁ and KIPATED Est.(w 0.550 0.610 0.747 0.758 0.429	h ada rage s O ₃ . AVERAC O ₂ 0 em 7 : 4 : 5 : 4 : 5 : -1 7 : (ptation step le # STEP L 2.80 2.33 0.33 14.07 0.00	methou ngth an ENGTH DU 0.5500 0.6175 0.7475 1.0312 0.4297	d A ₁ an d speed RING TEST A ₂ error (% -1.20 -0.33 16.87 0.00	d A ₃ , than PHASE
for anti- ON Wei cons duri and pati- accu rem TAB orig	the tot cipated and OF nberg stant K ong their ON stat ents P3 trate st aining n LE III. I NAL (O _x) Real	al wall distance F state algorith was cal OFF s tes for p and P- ep leng nethods REAL AD AND THE O1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	k. Tabl e travel d. The hm wa leulated state and patient ! 4. As v gth info s could n BR ADAPT OL2 UL28	Isons, a e IV a led by I original s imple for eac d imple P1 and ve did n ormation to be ta CIPATED ED (Ag)N	PD patie (O ₂) ar emented (O ₂) ar emented h patien mented P2 and o not have n of th isted. DISTANC IETHODS II O ₂	ationali npares ents both ad adap d here at on a in both only in e the l ne PD E ESTD FOR 3 HE Az	y, both the re th durin otation (Calil training of the ON sta eg leng patien	values al and g their A ₂) of bration phase ir OFF ttes for th and ts, the BY THE RSONS A ₃	TAB OF PI	It is seen orms bet r original LE VL RE- DPATIENTS Subjects P1-Off P1-ON P2-Off P2-ON P3-Off P3-ON	Real (m) 0.5357 0.6250 0.7500 0.8824 0.4297 0.4500	the boi for ava O ₁ and ICIPATED Est.(w 0.550 0.610 0.747 0.758 0.429 0.426	h ada rage s O ₃ . AVERAC 0 2 1 7 2 -1 7 7 (9 9 -	ptation step le wr (%) 2.80 2.33 0.33 14.07 0.00 5.14	methou ngth an ENGTH DU ESL(m) 0.5500 0.6175 0.7475 1.0312 0.4297 0.4306	d A ₁ an d speed RING TEST A ₂ error (% 2.67 -1.20 -0.33 16.87 0.00 -4.32	d A ₃ , than
for anti- ON Wei cons- duri and pati- accu rem TAB ORIG VI	the tot cipated and OF nberg stant K ong their ON stat ents P3 trate st aining n LE III I NAL (O _x) Real	al wall distance F state algorith was cal OFF s tes for p and P- ep leng nethods CEAL AD AND THE 011 12222	k. Table e travel d. The him wa culated state and patient 1 4. As v gth infi s could 1 ND ANTI ER ADAPT 012 1128	Isons, a e IV a led by I original s impl for eac d implet P1 and we did n ormation to be ta CIPATED ED $(A_0)N$ A ₁ 12.61	nd, add lso con PD patie (O_2) ar emented h patien mented P2 and o not have n of th isted. DESTANC IETHODS I O ₂ 12.85	ationali npares ents both ad adap d here at on a in both only in e the l ne PD E ESTD FOR 3 HE A2 12.81	y, both the re th durin otation (Calil training of the ON sta eg leng patien ALTED 1 ALTEN PE 0, 11.87	values al and g their A ₂) of bration phase ir OFF tes for th and ts, the BY THE RSONS A ₃ 11.96	TAB	It is seen orms bet r original LE VL RE- DPATIENTS Subjects P1-Off P1-ON P2-Off P2-ON P3-Off P3-ON P4-Off	red that ter both methods L AND AND 0.5357 0.6250 0.7500 0.8824 0.4297 0.4500 0.3724	the boi for ava O ₁ and ICIPATED Est.(w 0.550 0.610 0.747 0.758 0.429 0.426 0.372	h ada rage s O ₃ . AVERAG 0 ₂ 1) em 7 : 4 : 5 : 4 : 5 : 4 : 7 : (0) 9 : 4 : 7 : 10 :	ptation step le # STEP L 007 (%) 2.80 2.33 0.33 14.07 0.00 5.14 0.00	method ngth an ENGTH DU Est.(m) 0.5500 0.6175 0.7475 1.0312 0.4297 0.4306 0.3724	d A ₁ an d speed RING TEST A ₂ error (* 2.67 -1.20 -0.33 16.87 0.00 -4.32 0.00	PHASE
for anti- ON Wei com- duri and pati- accu rem TAB orag V1 V2	the tot cipated and OF nberg stant K ng their ON stat ents P3 trate st aining n LE III. I NAL (O _x) Real 12.20 11.76	al wall distance F state algorith was cal OFF s tes for p and P- ep leng nethods EAL AP AND THE 12.22 9.50	k. Tabl e travel d. The him wa culated state and patient 4. As v gth info could 1 ND ANTI ER ADAPT 012 11.28 8.59	Isons, a e IV a led by I original s impl for eac d implet P1 and we did n ormation to be ta CIPATED ED $(A_0)N$ A 12.61 11.98	nd, add lso con PD patie (O_2) ar emented h patien mented P2 and o aot have n of th isted. DISTANC ETHODS I O ₂ 12.85 12.18	ationali npares ents both ad adap d here at on a in both only in e the l ne PD FOR 3 HE 12.81 12.21	y, both the re- th durin btation (. Calil training of the ON sta eg leng patien MATED 1 1.87 11.87	values al and g their A ₂) of bration phase ir OFF ites for th and ts, the BY THE RSONS A ₃ 11.96 11.96	TAB of PI	It is seen orms bet r original LE VI REJ DATIENTS Subjects P1-Off P1-Off P2-Off P2-Off P3-Off P3-ON P3-Off P3-ON P4-Off P4-ON	ned that ter both methods L AND ANT 0.5357 0.6250 0.7500 0.8824 0.4297 0.4500 0.3724 0.4667	the boi for ava O ₁ and KIPATED Est.(w 0.550 0.610 0.747 0.758 0.429 0.426 0.372 0.381	O2 O3 O2 02 O2 02 O3 02 O4 02 O5 04 O6 04 O7 02 O7 02 O7 02 O8 04 O9 04 O9 04 O1 03	ptation step le # STEP L wr (%) 2.80 2.33 0.33 14.07 0.00 5.14 0.00 18.30	method ngth an ENGTH DU Est.(m) 0.5500 0.6175 0.7475 1.0312 0.4297 0.4306 0.3724 0.3826	d A ₁ an d speed A ₂ error (* 2.67 -1.20 -0.33 16.87 0.00 -4.32 0.00 -18.02	d A ₃ , than

So, they have some results they present these results.

And essentially they talk about the 3 different methods for step detection and their associated performances, then strength and weakness assessments, sensor location where should you put and then there are also step length estimations estimators 3 selected step length estimators from literature they look up then adaptation methods for each of the estimators.

So, in summary this is an interesting paper also because it sort of gives you an overview of how active this area is.

Ok so, I will take you to one more paper which is talking about step detection and adaptive step length estimation for pedestrian dead reckoning at various walking speeds using a Smartphone.

Essentially, what we have been talking of with respect to use of IMU's, this paper is also equally good and as you can see they are looking at adaptive step length estimation.

While this paper is interesting, they also have some nice ideas in this and I found this to be a nice thing. Let us read the abstract and you will essentially get a very good idea. I mentioned to you in one of the previous slides about getting raw accelerometer data and then applying a filter right. Now we could be applying as I said different orders of filters then you can have one of them which is quite popular is indeed the Butterworth filters. Here in this paper, they do it differently what they do is they do a FFT and then they do an inverse FFT back and that is purely for the purpose of noise removal.

We will see those results also. So, you can also apply FFT and inverse FFT to smoothen the raw values that you get so, that is a interesting. So, there is application of Lagrange multiplier and all that so, you can have a look at that. So, let us read the abstract this adaptive side length estimator for various walking speeds. So, you can see we apply FFT fast Fourier transform smoothening for the data that you collect, then we analyze this data set for step detection rules in order to detect walking steps and then there is an adaptive estimator which is based on the model of average step speed we accurately obtain the walking step length. To evaluate the accuracy of the proposed method we examine the distance estimation for 4 different distances and 3 speed levels, as usual claim is that the experimental result show the proposed method significantly outperforms conventional estimation methods.

So, what is the key take away from this paper, this point adaptive estimator is what they use which is based on the model of average step speed. So, they have to use the average step speed in order to accurately obtain the walking step length this is the big take away from the paper.

Lets examine this second paragraph here two main algorithms for distance estimation, the first one is successive double integral based step length measurement of acceleration. We have discussed this enough now you know that double integral based is not so good. The major drawback is error accumulated over the duration and how does one correct it there is a method you do 0 velocity updates ZUPT and while doing ZUPT you could essentially get rid of this to minimize I would say not get rid of will be able to minimize the accumulated error.

Now, the second type where researchers are looking at is do not do double integration at all. You have a verifiable relationship between vertical acceleration which is nothing, but yaw which is nothing, but Z which is nothing, but what I showed you in this phone moving up and down this is yaw this is nothing, but vertical acceleration this is nothing, but Z axis all are the same. you keep that in mind and as we read we will understand them further.

Vertical acceleration and the step length to estimate the distance travelled by a moving subject. So, this is so, then you have empirical solutions for step length estimation using mobile many many people have worked on it and they describe all the nice work that has gone behind.

daptive Step Length estim	nation3.pdf - Adobe Acrobal Pro		and the second second
Edit View Window	Help		
Open 👩 Croote + 📋	⊕ ⊖ ⊉ ⊡ ⊕ ⊘ ♥ ┣ ┣ ⊉ ⊉		Cuttorice +
(a 1/0 h 🔯 -	* m · B B	Tools	Fill & Sign Com
	traveled by a moving subject. Bylemans et al. [6] constructed an empirical solution for step-length estimation using mobile devices equipped on the subject's body. Another empirical method was based on the correlation of vertical acceleration at the foot of the subject [7–9] with the length of the step. Wang et al. [7] developed a wearable sensor module that could be attached to the ankles of the subjects in order to collect the acceleration signal during different walking activities, and then to estimate the walking distance. Indeed, these conventional methods showed good performance in the case of normal walking speed. However, if the user's speed increased, the estimation errors became excessively large. Considering these facts, we propose a step-length estimation method based on a previously developed method (namely, the Weinberg method [10]) to improve the estimation accuracy under		
	Sensers 2016, 16, 1423; doi:10.3390/s16691423 0.00000000000000000000000000000000000		
	Sensers 2016, 16, 1423 2 of 13	10	

So, considering many things many problems that are there so, this step length estimation method based on previously developed method. Particularly Weinberg.

Considering these facts, we propose a step length estimation method based on previously developed method to improve the estimation accuracy under the 3 speed levels of low, normal and high. Essentially it is also using the Weinberg expression and improving up on the Weinberg expression, to this end we define a unit conversion of step velocity and determine the step length using Weinberg formula and you can see that they do FFT operation to smooth the obtained accelerations before identifying the step phase using our step detection rules.

Then they transform the sensor coordinate system to the world coordinate system for step length estimation right and after the step length process. We estimate the step velocity they use a linear regression model and does determine the length of the step. Conclusively we sum up, sum all step lengths during travelling to obtain the walking distance. So, in summary even before you want to completely read this paper, this is what this paper capture.

So, all the related works are mentioned here you can see that the proposed Weinberg formula is this.

And walking distance estimation is what they are trying to get to and then they have an experimental set up which they talk about.

You can see that Z is nothing, but yaw it is moving up and down and what they do is, to in order to do this experiment they actually tie the accelerometer to the leg and this is very very important because they really want to get to proper ground truthing.

And this view, this paragraph is really very good if you follow this you will understand as something very nicely written here for instance, if you take young guys. What is their speed at which they walk 14 to 64 walk about 1.25 meters per second. Older people older pedestrians 65 and above go roughly 90.97 meters roughly 1 meter per second and therefore, there is according to some other observations, mean comfortable speed is about 1.27 meters per second for women and 1.46 meters per second for men. And whereas, the mean maximum speed is 1.75 meters per second for women and 2.53 meters per second for men, you plot all this and then you look at other studies that have been done and you start plotting you will get this nice average human walking speed which is on the x axis, nice histogram that you can actually plot.

And then you will see that you can set the v bar which is nothing, but the average velocity to about 1.36 meters per second with a sigma which is nothing, but a deviation of human walking speed is about 0.29. So, you can see this and then they start using this basic data for all their further characterizations.

So it is a really well written paper.

They do FFT for data smoothening you can go through this in detail, but what is interesting is this.

Look at the top picture which is the raw signal and look at the smoothened signal after you do FFT, you then go back and do an inverse FFT.

Then you use the Lagrange multiplier y which was obtained from some other expression and then you plot it back.

You get back this nice smoothened signal of the z axis which is nothing, but the y which is nothing but the vertical displacement which is nothing but the yaw essentially of the phone.

Then there is a nice Pseudo code which is talking about how you do the Smoothening of the signals.

And then step detection rules you have to do. Some RMS concept for processing raw acceleration data you use this expression and then you go on and try to improve on it.

This is perhaps one paper which actually talks very well and this picture if you see this picture is exactly what we were able to plot also, you will see that there is a heel strike, then there is stance, heel strike, stance, heel strike and stance and so on. That is this hip is moving up down, up down, up down, which is what we saw in terms of that hip movement was also called the bounce in the other paper, which is nicely matching everything x axis is time and y axis is acceleration given in meter per second square the results that you see are essentially that.

Whenever there is a heel strike you will see that it is the minimum right and whenever you go to stance it goes to the maximum, why, because your leg which is like a lever sort of becomes straight and then moves the hip up moment that happens you get a stance. So, these peaks are essentially stance and the heel strikes essentially are essentially the minimum point. So, essentially it is just that part which is used.

And then you have a nice algorithm vertical acceleration based on walking distance and all. So, this paper goes on talking about their own method of trying to come up with how to estimate the Stride length.

So, the adaptive stride length method what they do is, you have seen that value K in that expression Weinberg expression. So, instead of using the constant K for all steps we derive so, they derived a K factor as a polynomial function of the average step velocity and that is what this whole paper is all about.

Adaptive Step Length estin	ation3.pdf - Adobe Acrobat Pro	
File Edit View Window	Hep	71 7 ¹¹¹ X
🔄 Open 🛛 📆 Croate + 🛛 🔄	\$ # D D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cuttorice •
* * * * /=]+ 🖾 -	* m - B D	Tools Fill & Sign Comment
7		
	Sensors 2016, 16, 1423 9 of 1:	3.
	v_{step} and v_{step} , to train the K-value using a linear regression model. The adaptive K-value was obtained	
	as follows:	
	$K_{vel} = 0.68 - 0.37 \times \bar{v}_{step} + 0.15 \times \bar{v}_{step}^2$ (12)	
	where v_{step} was computed as the magnitude of the average velocities on three dimensional axes, X, Y	
	and Z in each step:	·
	$a = \sqrt{a^2 + a^2 + a^2}$ (12)	
	$v_{step} = \sqrt{v_{stepX} + v_{stepY} + v_{stepZ}} $ (15)	' I
	where \bar{v}_{cleary} , \bar{v}_{cleary} , and \bar{v}_{cleary} were obtained using the accelerometer double-integral formulas:	
	super super 0	
	$-(1 \dots n)$	
	$v_{stepX} = \text{mean}\left(\int a_{r_stepX}(t)dt\right)$	
	$\bar{v}_{stepY} = \text{mean} \left(\int a_{r_stepY}(t)dt \right)$ (14))
	- with	100
		13-11-2018

And so, essentially you have to look for a polynomial function of the average step velocity and then they do that and then they obtain some.

So, they collect lot of data they use some part of it for training and some part of it for testing and testing data and then they have their experimental results which and then they describe their experimental results.

And finally, they do show that there is some sort of improvement with the adaptive method, they have a way to go with an adaptive K using this walking distance estimation method and in particular they introduce this new step detection algorithm and step length estimator and they have some results of that.

You can go through this paper in detail and understand them and perhaps arrive at something which you may want to try yourself.