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Alright. So, our goal is to look at calibration methods for IoT air quality sensors right
you want to do this, but we may now be wondering why is it being done before we do
any system building or any you know short very demonstration is being done, we are
already looking at calibration methods. The reason why I am doing this prior to you

know any system building exercise is only because this a very important topic number 1.

And, your electronics sensing system all that is all fine, but if you do not have a good
calibration handle, it is of no use building anything with respect to air quality number
that is a second reason. Third reason is this is purely algorithmic ok, it does not matter
whether it is air equality or anything, whether you have data or not. Your, understand the
algorithms which go behind calibration and as I said these are some of the latest topics in
calibration. And, particularly applying statistical learning and machine learning

techniques has taken the forefront.

And therefore, doing this is a module to get your field for the problem is really not out of

the place. However, how good your data comes and how good the statistical learning and



other machine learning techniques can be applied will largely depend on will be
dependent on how good your data is right. Therefore, before we get into anything with
respect to calibration method, let us understand what are these sensor sensors

specifications? Ok.

Mainly specifications of sensors and I am just going to concentrate on electrochemical at
the moment, you can make a bulleted list for the semiconductor sensors as well
electrochemical. One of the first things that you have been looking at is linearity, because
this is linearity, see this is a subject on instrumentation. Sensors and instrumentation
there are some very common terms repeatability, linearity, resolution accur all accuracy
all these terms are all part repeatability, all this things come part of any sensor
specification. So, linearity is one such a specification first thing that occurs to you if you

have a sensor you should say what is it is linearity is it a linear sensor right.

So, linearity is an important requirement. So, it is best shows linearity in a range. So, you
do not define a sensors linearity over a full range never done that way. You define it over
a range and you say between this PPM to that PPM or micrograms per meter cube
depending on how you want to use different units, you define it over a range right. And, I
flash to you ambient air quality range I also flash to you the exhaust vehicle exhaust you

know range.

So, if they are linear in the range of measurement fantastic that is all you are interested in
right. So, linearity is best linearity best linearity in the range, in the specified range, that
is all you are looking for this is one specs. Second specification is if it is slightly beyond
the range specified range. Now, if it is greater than specified range what will happen?
Will the linearity, you know you know will be not guaranteed yes that is a point. We can
also have a maximum so, this leads to another spec which is called maximum overload

maximum overload.

And, so, maximum overload is linearity not guaranteed; linearity not guaranteed linearity
is not so, it is inaccurate. And, and therefore, also another problem that will happen is if
you work in this maximum overload situation sensor takes a long time to recover. This is
important suppose he is doing a measurement and because it going beyond maximum

over head or overload condition the sensor will have to recover from that condition.



So, the next view measurement results are going to be inaccurate, whatever is your
learning technique be careful you should not over whelmed the sensor. You should not go

beyond the maximum overload and go beyond the linearity region of the sensor.

(Refer Slide Time: 06:07)

Ambient air quality:

Target Gas Appx range

NO2 10-45ppb(max 200ppb
NO 0-100ppb

03 0-100ppb

NH3 0-200ppb

HC <500ppb

PM2.5 65-70ug/m3

PM10 100-150ug/m3

Supposing it is meant for measuring, let us say typically let us take the ambient
measurement. Let us take this chart ok. This is the range over which you want to make a
this is not something I keep repeating a 100 times repeatedly, this is not the range that is
acceptable for human breathing, this is from a sensor perspective, this is the range over

which you want to make a measurement, sensor takes too long.

So, for example, if this is the measurement that you are doing and you suddenly realize
that you have passed during testing phase a gas N O 2 gas, essentially over and above the
200 PPB range, which was guaranteed by the sensor, then it is going to get over
whelmed. And, is going to take a long time for the sensor to come back and make a

proper measurement.

Therefore, your calibration methods will work very good provided you take care of the

basics of gathering good quality data proper data by adhering to these requirements.

So, maximum overload condition is an absolutely important requirement. Then the other
one is sensitivity, the other one is sensitivity. It basically response to refers to the ppm

parts per million of the target gas ok. Target gas this is pretty straight forward, you look



at do not you have to look at what you want to measure what is the range over which you

want to measure.

And, also ensure that your sensors are capable of measuring to that value, then there is
something called response time ok, there is something called response time. Here it is
response time of the gas sensor ok, number 1; it is the response time of the gas sensor. It
should take say typically 90 percent of whatever you know the taken to reach 90 percent
of the applied gas time. So, it is a time it is about response time right. So, time taken to
reach 90 percent of the target gas concentration ok, gas concentration ok, concentration

is typical of what is called T 90, that is T 90 means T 90 percent.

So, T 90 is what people talk about you pass 10 PPM 10 PPM of some gas the time it
takes to reach 9 PPM ok. The not actually to reach the time it takes to read 9 PPM is
what you are looking at 90 percent of the target gas concentration is very nice example,

but response time is important T 90 response time.

So, you should ensure that whatever calibration methods that you are applying your input

data quality is guaranteed and it is doing all this things.
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Then 0 signal 0 signal, even this becomes crucial when you are training your models
using any of the analytical any of the statistical learning techniques ok. There should be

no sensor output under clean air. Now, you will have to understand what is this clean air?



Is clean air at all your problem is you do not know what is clean air ok, where is your
reference right. That is why they say clean air is also called I will say it clean and dry air.
Typically people say clean and dry air, clean air or dry air, clean and dry air, I will call it
clean and dry air, what is this air? This air is 78.09 percent of nitrogen right and 20.95 of
720 of oxygen, than 0.93 percent of argon. And, 0.04 percent of C O 2 ok, this is what it
should be this is what you are expected to have clean and dry air, clean air this is clean

air, this is what you should be breathing all the time right.

So, this essentially I hope this will add up to 100 percent and if any change occurs then
you know essentially the other gases the partial pressure of other gases will increase
creating uncomfortable feeling for humans. So, anything you do is it should not have any
other pollutants under no pollutant condition, under clean air condition, you should get 0
output, then there is something called baseline shift. So, I have put one arrow here. I will

put another arrow here they something called baseline shift ok.

So, this essentially is some sort of small drift and nondeterministic small and
nondeterministic, nondeterministic temporal variations temporal variations right, when it
is exposed to the target gas ok, when it is exposed to target gas. That means, it just does
not you know indicate that a single value, but keeps drifting up and down a little bit
under ideal conditions target gas, temporal variations even in the presence of the target

gas ok.

It effects the ability to measure the gas accurately. So, if it is fluctuating too much you
will have a problem. And so, you will have lot of false alarms, if it is well within the you
know measurable range without too much of variations small extremely small, I would
say extremely small it can be non-deterministic, but extremely small temporal variations
of target in the presence of target gas no problem leave it. But, if it is too much you will
have too many false alarms, then you have problems of then maybe the sensor is aged
sensor has aged; that means, it has come to end of life ok, there are some manufacturing

defects there are manufacturing defects and aging and so on.

Ah. Then perhaps it is having too much of cross sensitivity, because of it is age, it
perhaps has developed a lot of cross sensitivity, interfering gases are too much, it has
some problems in trying to work under ambient pressure ok. And, therefore, you may

have to the only way out is frequent calibration.



So, your back to the same problem. Supposing you want to do if you want to do
calibration methods, now your question will be you also have to account for what is the
baseline drift that is coming into the system. So, that even that is accounted for and you
know with ensure that you resolve this problem of baseline shift, then there is resolution
ill put one more arrow here. Then, there is resolution well this definition is this quite
simple straight forward whatever you knew well smallest separation essentially right,

smallest separation between 2 adjacent points, between 2 adjacent points right.

And so, you should be able to say the gas sensor has a high resolution alright. And, so,
better resolution not only from sensors perspective, but also from the instrument that is

displaying the value. So, it should also be including that alright.

So, one good thing about electrochemical sensors, which I wanted to tell you is that EC
sensors have good linearity. One of the major I would say positives of electrochemical,
although they have limited shelf life and they have to be frequently replaced recalibrated
and all that this perhaps is a very strong point they maintain linearity. However, the
electrochemical sensors also suffers from the fact that they requires bias voltages, bias

voltages will be required.

See this is one thing about gas sensors and measurements and so on. If, you look at
electrochemical, if you look at the semiconductor sensors, they have typically initially
you are to heat them for something that overnight and only then you have to start making
a measurement. So, when you buy it of the pack it should not you cannot start using it
directly I pass through the steps for you. And, you have to ensure that it is kept overnight

and then only then it can actually start making a proper measurement.

Now, the issue is the there is a sensor the sensor part will have a heater and there will be
a sensor output. So, heating is an input sensing is an output. Now, it turns out that you
can not make a measurement if the heater is off the value is not going to not going to

whatever you read is it going to be incorrect.

Therefore, if you do any energy power management strategy that you want to do so on
and so forth. That is a bit hard because the heater should be on all the time if you want to
do quick measurement of let us say N O 2 somewhere you are going, some road or
somewhere you want to do exhaust ambient you want to do and you are in front of a

traffic signal. You can not keep your the heater off you cannot surely with your



semiconductor sensor the heater is to be on all the time. Maybe sensing can be kept off

kept on you can read it.

People may actually may become as electronic engineers, we also know that you if you
are not able to if you do not if you want to save power, you do not need to have a linear
power supply which is connected to the heater. You can do switching right you can do
pulsing you can pulse and therefore, save a lot of energy, because you will only be you

know like a DC converter output will be just pulsing the power.

Now, here is the problem, that pulse power is also not acceptable to several of these air
quality sensors. Therefore you are forced to keep a linear power supply, you are expected
to keep a good DC, and keep the heater on all the time. So, again do not worry so, much
about energy consumption power consumption and so on, because this is about

betterment of life you must ensure that this has to be on all the time.

So, keep these things in mind when you do any system design. So, coming back to
electrochemical it is a same issue here, you definitely need a bias voltage you basically
need what is known as a potentiostat function correctly most often you will need to work

like a potentiostat potentiostat ok, your essentially talking about potentiostat.

So, the biased requires a warm up time of about 6 hours also 6 hours of warm up, 6 hours
of warm up and then you see ensure that it is stable enough, and then you start you apply
the correct bias voltage, correct bias voltage has to be applied, you apply the correct bias
voltage. And, then you stabilize the sensor right and after that you essentially start using

it.

So, you read the data sheets of whichever sensors that you have shortlisted carefully to
know what is the heat up time or the warm up time that is required both in the case of
electrochemical as well as in the case of semiconductor sensors. Finally, there is another
term, which you have to note, which is the temperature data, temperature data of any

Sensor.

And so, temperature dependence on gas output is an important parameter you may have
to do temperature compensation of temperature is an important thing. And so, you will

have to keep a note on that is [ would say. So, before you go into any calibration methods



understanding algorithms, think about the kind of sensors you are you have with you and

the kind of you know specifications that you have lead.

So, that you collect good quality data and then move on from there in terms of trying to
do calibration right. So, this is what I wanted to tell you before when even we go into
any calibration method. Let us now get into some of the statistical learning techniques

for calibration of these 10T sensors.
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The simplest you can think of is the linear regression and you can see that in this book let
me expand it so, that in this paper you will see that the linear regression is explained.
Each sensor for each sensor calibration function was established by assuming the

linearity of the sensor responses with the reference measurement for each pollutant.

Ordinary linear regression was used with the minimization of squares, square residuals of
the sensor responses versus reference measurements. Ah. The calibration functions were
of the type Rr s is equal to a dot x plus b where R s represents the sensor responses and x
is the corresponding reference measurements of air pollutant. Finally, the measuring
function the converse equation X is equal to R s minus b by a was applied to all sensor

responses in order to predict air pollutant level. So, how do you get to this?
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If you look up any text book on linear regression you will see some simple definitions I

just wanted to quickly capture this. You basically have what is known as the response
variable which is nothing, but the estimated variable of interest? In order to get to this
estimated variable, you need what are known as predictor variables and this predictor

variables are essentially quantitative by nature.

So, you could do you could perform several arithmetic operations on them multiply add
divide and so on. These are essentially variables used to predict the response. So, the
response variable comes from the predictor variable. And therefore, you use this

regression techniques to develop these linear and non-linear models ok.

Now, if you take a single predictor, if you use a single predictor, you essentially call it
simple linear regression model ok. And, that is a pretty straight forward I would say
definition and if supposing you want to show, it is very intuitive x is there you have vy,
and supposing this is your these are your set of points ok. Essentially sensor
measurements that you have done and you have a line like this or nothing to you have

points like this is again x and this is y and you have a fit like this.

Either going down as x increases y is going down or the opposite as X increases y is also
increasing both are extremely good regression models. But, if you have a crazy system
which essentially is like this now, supposing I have x here and y you have points like this

and you have fit like this ok. Then, you have errors right a lot of error is there in this



points. So, essentially your measured value and your estimated values are all in correct.

So, therefore, you would essentially say that there is a lot of error.

Now, even here if the how do you know sort of quantify this error, this is the problem.
How do you know your model is good because it is nice to see visually that there is a line
fitting and then the points are all closed by and perhaps everything is hunky dory in case
a and case b, but in case ¢ as you know the error is high, how do you do it
mathematically? So, you need a metric which talks about these errors. In other words if
you have a positive error the estimated response is less than the observed response and

while the others are negative.

So, all those situations are taken care and ultimately you need a criteria, that criteria
typically is the least square; least square criteria ok. In the least square criteria you
basically have a mathematical definition for least square which says y hat is equal to b
naught plus b 1 times x ok. Now, what is your error, error is essentially y i minus y hat of
this I, this is your error this is your error e is error € is error very basic stuff I am just
trying to give you in one go everything so, that you will be able to sort of piece things
together.
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Now, when you talk about the best linear model best linear model, you look at sum of
squares error ok, sum of squared errors sorry sum of squared, sum of squared errors ok.

When you say sum of squared errors you have to put a sigma of what of e i and you have



to do is square. And, what is I going from one to this n complete set of samples, the this
is what you talk about SSE right is equal to sigma i going from 1 to n, you have y 1
minus b not plus minus b 1 inotb 1 bisorry b 1 sorry b 1 x i it should be b 1 x i whole

square ok. And you have the sigma here. So, it will take for all the samples ok.

This one should be equal to 0; that means, it is the best linear model. And, essentially this
paper is talking about that only, this paper is saying essentially the same thing I want you
to fit that understanding I showed you with this. So, that you exactly know what is it that
you are trying to you know predict the how you are able to predict the air pollutant levels

alright.
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Maltiarate Y;. Models were established during the MACPoll studies (see The rest of the dataset (about 85% of data) was used as

E'JW Table 2). Coefficients a, b, ¢, d and e represent calibration param-  dation set to ensure that the results on the testing and traini
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So, you have multivariate linear regression that is another way of calibration was carried
out using linear square method. And, you have like LR the calibration function consisted
of equations of types R s is equal to function of X comma Y i and is a function of

multiple reference measurement.
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lor meteorological parameters: ambient temperature, ambient ~ Table2
klative humidity, ambient pressure and a 10m mast for wind  MH models of singlesensor.
. |peed and wind direction. Sensor's model Multivariate linear model
" Jor 05, a UV Photometric Analyser Thermo Environment 49C, a 0384 = 50N, 80,104
hemiluminescence Nitrogen Oxides Analyser Thermo 42C for (3 355
03/NO/NOy, a Non-dispersive Infrared Gas-Filter Correlation NO2B4
pectroscopy Horiba APMA 370 for CO, a UV Fluorescent Anal- NO2.3E50
ser Thermo 43C TL for SO;. For CO,, we used a differential MICS-2710
lon-dispersive Infrared Gas Analyser Li-cor 6262. MICS-4514
CairClip NO2

The gas analysers were calibrated in laboratory before the
d tests and then they were checked every month. Field checks
re carried out using filtered zero air and span value. This
consisted of low concentration gas cylinder certified by the
Nt Research Centre which is accredited for these analyses. The
cylinders used included concentration levels of 50, 100 and
il ) nmol/mol for NO/NOX, 50|1|110]/|110} for SOy, 1.3 pumol/mol for  3.3. Artificial neural network (ANN)
() and 369 wmol/mol for CO, (uncertified). An ozone generator
R4 rmo Environment 49 CPPS 11 model, delivering 100 nmol/mol Artificial neural networks (ANN) are very sophisticated mod-
zone, was used for the calibration checks of the ozone analyser. elling techniques able to model extremely complex functions well

applied to each sensor. The same pattern of calibration/validation
setsas for linear regression was used for the multi linear regression.

33 aniical
el

s highest observed calibration drift during field tests consisted  suited for the calibration of a cluster of sensors. In this study,
s N .5% for NOINO» and 0. 4.5% for CO. 2% for S0, and 1.5% for __two_tvoes of ANN architectures were considered: radial based

1740
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And, then you have some numbers coming up. So, let me quickly want to this part and it
is applied to each sensor. And so, that is another way of another technique for calibration.
Then, you have the third technique which is the artificial neural network techniques;
these are quiet sophisticated modeling techniques. And, you can see that the able to

model extremely complex functions.

And, you essentially talk about radial basis function and functions and multilayer
perceptron’s essentially MLPS they are called, the radial based functions are not so, good
it seems from this paper study. And, it appears that MLP multilayer perceptron seem to
work very well, and the most popular architecture used today due to original people who
invented this architectural system seems to give good performance results. So, they
essential you are talk about a number of inputs either from original data or from output
of other units in the neural network. And, you will have typically one hidden layer with

several hidden units.

And, then the weighted sum of input is formed to compose the activation of the unit, and
with the number of defined layers, and the number of units in each layer the network
waits and thresholds must be said in order to minimize the prediction error made by the
network. So, you use for training algorithm such as the back propagation, which is
typically an algorithm called BFGS you can see here Broyden-Fletcher-Goldfarb-Shanno

algorithm the most recommended techniques are all mentioned in another reference



paper and to automatically adjust the weights and thresholds in order to minimize this

CITOorS.

So, essentially you are trying to again get back the closest value measured value, the
measured value should be closest to what is the actual PPM value measured off by the
sensor in it is linear region. So, all the objectives is essentially that, that you should be

able to apply either statistical or this machine learning techniques in order to arrive at it.
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P Rt than the hourly ones. lower extent with CO and NO. A aconsequence, itwill e diffcult
4 o estimare 0s comeetly sioo tenmoes .

So, this paper if you read this paper you will get some idea on how one can apply these

little techniques.
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And, there is not much scope for us to spend more time than this, but you can see that
there are you know predicted sensor values which are shown here in this results and they

are trying to estimate as close as possible.
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Py doubt exists for NO, and CO since they are highly correlated. T —.
Matiarate
st 42. Restlts of calibration methods Fg .U,
e pretation inthe ext,
" fhis e,
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neual il | o usi do of he ey 100 afected by temperature or humidity but it sufeed from a
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ults _smwsrh.m entical sensors tend to perform in a similar way even i, 3 gives the scatterplot of the orthogonal regression of the k
if some variance can be observed. Er e e = A

And, they are trying to calibrate the sensor right. Because, if you read a voltage you
should know from that voltage what exactly is the PPM; PPP levels and only then you

know for sure that you are calibration is good.
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For example, Fi. 2 gives the scatterplt of the LR predicted
sensor values versus the Oy reference for the 2nd

calibrated sensor data using the MLR method against the reference
measurements, In this particular case, the use of NOy reference

033EIF sensor. Red dots represent the values used during the
calibration process and the blue ones represent the predicted
data based on the validation data set. This sensor was selected
because it showed the best correlation factor (R2=0.88) during
the calibration period. The scatterplot shows that the strength of
association slightly decreased during the validation period similar
to the calibration with K2 =081 compared to R2=0.88, During the
MACPoll project, it was observed that the 033EIF sensor was
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Fig. 4 gives the target diagram for LR, MLR and ANNs calibration
methods for both gaseous species. This type of diagram [35] was
used to evaluate the time trends of the sensor predictions (E) and

L. Spinelle e al./ Sensors and Actuatrs B 215 (2015) 249-257

Mo, types, th

R was very low
resulting in slop and intercept far from 1 and 0 respectively. Itis
likely that NO3 sensors at a semi-rural site are affected by the low

NO; levels and hig! and NO; to which the

X-axis the centred root mean square error (CRMSE! lized by
the standard de whichisan of theNO
indicator of the modelled random error. The Y-axis represents the

rrclation of the . Whi
the systematic bias. The distance between each point and the origin
fepresents the root mean square error (RMSE). Finally, the circle
area corresponds to the area of acceptance and stands for points
where the model random error s equivalent to the variance of the
observations. Data inside this circle indicate a positive correlation
between modelled and observed values.

Based on Eq. (1), the relative expanded uncertainty (Ur) was
plotted against O3 and NO2. Fig. 5 shows Ur versus Os reference
measurements for the best 03.3E1F calibrated by LR, MLR and by
ANN raw data, ANNscaled data or ANNMLR data.Fig. 6 shows Ur for
NO2. Only the plots of ANNs methods appear since the ones for LR

d MLR felloutside the y-axis. Finally, Fig. 7 g

higher than the ANNs methods. However, within ANNs, as for 03
the raw and scaled inputs resulted in lower biases than ANN-MLR.

No high NO; was measured during the measuring campaign,
making it difficult to correctly apply the calibration methods, For
LR and MLR, Uy was too high to be visible within Fig. 6. However,
using ANN: faround 20% hed, this value
increasing for NO; higher than 20 nmol/mol for the raw and scaled
inputs, This behaviour was not observed with the ANN-MLR which
appeared to remain rather constant, One shall remember that
implementing the ANN-MLR requires a set of 7 sensors, of which 2
NO2 MOy and 2 NO electrochemical sensors, 1 03 electrochem-
ical sensor, 1 CO electrochemical sensor and absolute humidity
(therefore temperature and relative humidity sensor). Moreover,

ofthe 03 and N0,
sensor predictions using LR, MLR and ANNs calbration methads

5. Discussion

Considering the best O3 sensors, the coefficients of determi-
nation of the calibration dataset were high for LR calibration and
slightly higher for the MLR method, both methods resulting in a
high R? for the validation dataser. However in both cases the slope
(about 2) and ntercept of the orthogonal regression were respec-
i 04 o o

P models
(Table 2) including reference measurements for O3,

Finally,Fig. 7 shows that LR and MLR methods appear to be with-
out drift over time. Nevertheless, enormous noise in particular for
MO, beobserved. As for Os, th hods appear
tosuffer from a low drift of about 4nmol/mol in about 4 months
for raw and scaled inputs and 6 nmol/mol for MLR inputs.

Based on the requirement of the European Air Quality Direc-
tive forindicati b d
only if the uncertainty had exceeded the Data Quality Objective
(DQOs). For 03 the DQO corresponds to an uncertainty of 30% at the

" Sl bk g

So, I urge you to read this paper in detail and also to highlight to

important technique for you to make a measurement.
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NO2. Only the plots of ANNs methods appear since the ones for LR
d 1l outside the y-axis. Finally, Fig. 7 gives the times series
1

ofthe 03 and N0,

ical sensor, 1 CO electrochemical sensor and absolute humidity
(therefore temperature and relative humidity sensor). Moreover,
I odels

sensor predictions using LR, MLR and ANNs calibration methods.

5. Discussion

Considering the best 03 sensors, the coefficients of determi-
nation of the calibration dataset were high for LR calbration and
slightly higher for the MLR method, both methods resulting in a
high R? for the validation dataset. However in both cascs th slope
(about 2) and ntercept of the orthogonal regression were respec-
tively different from 1 and 0. All thesc indicators are noticeably
much better for the ANNs methods: higher R? for the validation
dataset,slope nearer from 1 and ntercept of a few nmal mol.

Similarly, the targetdiagram shows that the ANNs result both in

d - CRMSE s} e
LR and MLR. Moreover, LR and MLR symbols fall generally outside
the targe cirele, called fficiency score, evidencing RMSE up to 2

The use of ANN for calibration purpose appears to be the most
efficent in terms of uncertainties In fact, the O3 DQO is only
reached with ANN for concentrations higher than 35 nmoljmol,
whichis alower evel thanthe imited value of the Directive, More-
over, th i

[
(Table 2) including reference measurements for 03,

Finally, Fig. 7 shows that LR and MLR methods appear tobe with-
out drift over time. Nevertheless, enormous noise in particular for
Mo, R h T

. As for O3, th
to suffer from a low drift of about 4 nmol/mol in about 4 months
for raw and scaled inputs and 6 nmol/mol for MLR inputs.

Based on the requirement of the European Air Quality Direc-
tive forindicative method: Id have b d
only if the uncertainty had exceeded the Data Quality Objective
(DQOs). For O3 the DQO corresponds to an uncertainty of 30% at the
limitvalue of 60 nmol/mol, which means 18 nmol/mol. For N0, the
DQO is 25 nmol/mol, which represents 25% of uncertainty at the
limit value of 100 nmol/mol. For both O3 and NO, ANN method
shows a maximum drift on residuals of 6nmol/mol, three times
lower than the DQO of 0.

6. Conclusions

regressions of the sensor outputs versus reference data, the most

sensorinputs. Simple LR and MLR have shown to produce the high-

atlowlevel and reach the 30% The ANNs

While ANN with ML

based on raw and standardized inputs showed identical Uy plos.
Consequently, the casier ANNs inputs based on raw or standard-
ized ANNs should be preferred. The Uy plotsfor LR and MLR show
higher values exceeding the DQO. These plts also show a positive
trend towards high O, showing the effect of large slopes of the
Tabled) Fig.7gi ligh
driftofthe calibration methods over time of about 5 nmol mol over
nearly 4 months for ANNs, and about 20 nmol fmol for LR and MLR
While the ANNs with the raw, scaled and MLR input esults i sim-

data,using only 3 sensors ofdiferent types (1 03 chemical, | N0
resistive sensor and 1 CO electrochemical sensor), were able to
solve the main inerferences of the 03 sensor.

In general, it was shown tha the ANN method increased the
strength of association between estimated and reference data
(higher K2 and lower CRMSE). Moreover, it also allowed the
decrease of the bias to reference data, with the slope and inter-
cept of orthogonal regression being respectively nearer to 1 and
0.

is that measurement uncertainty estimated by orthogonal

regulations of sensor output versus reference data ANN appears to you know be very

good because L R and M L R have shown to produce high highest measurement

uncertainty. So, therefore, moving in the direction of artificial neural networks to



calibrate sensor perhaps is

measurements.
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DQO for NO should be evaluated at higher levels typical for urban
environments,
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Similarly, the target diagram shows that the ANN result both in
alowes

. CRMSE,
LR and MLR. Moreover, LR and MLR symbols fall generally outside
the target cicle, called effciency score, evidencing RMSE up to 2
higher
The use of ANN for calibration purpose appears to be the most
efficient in terms of uncertainties. In fact, the 03 DQO is only
reached with ANNs for concentrations higher than 35 nmol/mol,
hich he
over, th

shows a maximum drift on residuals of G nmoljmol, thrce times
Tower than the DQO of 05,

6. Conclusions

regressions of the sensor outputs versus reference data, the most

sensorinputs. Simple LR and ML have shown to produce the high-

atlowlevel and reach the 302 DQOat The ANN:

While ANN with ML

based on raw and standardized inputs showed identical Uy plots.
Consequently, the easier ANNS inputs based on raw o standard-
ized ANNs should be preferred. The Ur plots for LR and MLR show
higher values exceeding the DQO. These plots also show a positive
trend towards high O3, showing the effect of large slopes ol (I\a
Table 4), ig. 7.
overtime of about
|\a.my4 months for ANNs, and about 20 nmol/mol for LR and MLR.
‘While the ANNs with the raw, scaled and MLR input resultsin sim-
ilar drifts and constant noi higher drift and
noise than LR,

It should be noted that in Figs. 2 and 3 we have observed a
slight overestimation of the predicted values. Actually, the main
error s due to the extrapolation of data higher than the maximum
value observed in the calibration dataset. Both methods are suffer-
ing from a lack of sensitivity regarding interfering effect such as
lcmpcralum and relalwc hulmduv

ahigh R2 for LR methods

data, using only 3 sensors of different types (1 03 chemical, 1 NO
resistive sensor and 1 CO electrochemical sensor), were able to
solve the main interferences of the 03 sensor.

In general, it was shown that the ANN method increased the
strength of association between estimated and reference data
(higher R? and lower CRMSE). Morcover, it also allowed the
decrease of the bias to reference data, with the slope and inter-
cept of orthogonal regression being respectively nearer to 1 and
0.

Iuis likely that by combining different type of sensors, like elec-
trochemical 03 and NO; MO, sensors for example, the ANN can

I major part
of sensors, We have also observed that the humidity/temperature
dependence was also corrected, without the needs of such mea-
surements. We suppose that it is linked with the difference of
influence of these parameters on both types of sensors, Finally,
we slmwcd llm usinga cluster of sensors for calibration purpose,

apart [mm one CairClip NO, with the calibration dataset. Higher
values where reached for MLR up to 0.75 for some sensors both of

f the European Directive for indicative
mcwlvods <auldbe met for 03 (uncertainty, Uy, of 30%) at semi-
rural stations. Formal conclusions on the possibility to meet the

air quality



And, also this problem of cross sensitivity is an issue which is a problem for several
sensors. And therefore, it is good for you too also check that the n and techniques can
also solve this problem of cross sensitivity. So, I would say that it is a very important

piece of paper that piece of work that you may want to ultimately understand.
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