
Advanced IOT Applications

Dr. T V Prabhakar

Department of Electronic System Engineering

Indian Institute of Science, Bangalore

Lecture – 3

Outdoor localization without GPS – II

So, what will do now is we will try and see the physical code which implements the

localisation without GPS. You have seen the bicycle and where the sensors were placed;

what were the sensors that were used and all that. So, just now let us summarise and look

at the code.

But before you start looking at the code, it is important to understand the philosophy of

trying to localise this cycle so that you would have to get very clear. Look at it this way

as your driving the bicycle often at very low speed, you hold the handle because of at

low speed your unstable. So, the handle keeps shifting all the time.

So, sometimes when you apply brake or your front wheel shifts or when you are moving

very slowly, the front wheel sort of moves around perhaps not in a straight line; keep

moving a little bit. So, the magnetometer will give you lot of fluctuating values which

often mean nothing, you are not changed any direction, but magnetometer is reflecting

all that. So, somehow you have to keep in mind that there can be lot of values for

magnetometer, but I must have an algorithm, which will sort of eliminate all those values

and sort of ensure that there is no change in direction. You would not have that much of

a problem with hall sensor; a pulse will come only when there is a wheel rotation.

So, now you can actually start thinking about your algorithm, if there are no pulses

coming, but magnetometer continuous to indicate values clearly someone is playing the

fool with the handle. It is just moving and then creating a lot of data from the

magnetometer which is not going to going to help you.

You can also have a situation where pulses are coming very slowly, but there is a lot of

fluctuation in the magnetometer which is clearly an indication that you are at low speed

and you may end up with a situation where large deflections can come and you are not

even sure whether you have actually done, you have turned left you have turned right

and so on.

So, all of this means your algorithm should be robust enough to take care of practical

situations of problems of this nature. The code that is written and the code that I would

like to share with you is just an overview which will work. But several modifications to

this code is up to you; you may want to try and you may want to modify based on your

local settings.

We mentioned that you will start with one assumption that you have the last well known

GPS coordinate and soon after you will start losing GPS. Quickly you absorb that last lat,

long and you will ask your algorithm which is called the localisation without GPS

algorithm to kick in and say ‘Hey, I have the last GPS coordinate do something with it

quickly’. What is this quickly? You take this last GPS coordinate and pass it through that

UTM, routine which I mention to you.

So, you pass it through that you will end up with some X, Y essentially GPS will give

you all the latitude and longitude and other height and other related information which

often may not be useful. Because in the localisation paradigm that we are talking here we

are purely looking at 2D from where ever we have lost to some reasonable distance

where other parameters given by GPS may not change significantly. So, that is the

assumption. So, then you get back you convert this latitude and longitude to some

realistic x and y; keep it with you and say ‘Hey, this is the last X, Y I know for sure

where I am from the GPS’.

Of course, the map is there with you. The map definitely you have to that is your

reference which you have with. It can be offline also. It is a map that is just stored on

your computer and which you want to keep mapping back, because you do not have GPS

now somehow you have to map it back and say ‘where am I?’, if you want to know you

have to consult the map only. That is the only way that you are going to use this

application.

So, somehow you have to hold on to that original that I would say x and y coordinates

and keep updating this coordinate as and when you get this magnetometer information

coupled with the hall sensor information. Hall sensor is perfectly going to tell you that

you have done a rotation; that means, circular motion has been converted to some linear

distance and that is when you get a pulse and then, you know the circumference and from

there you find out linear distance and all that you can do, simple geometry stuff and then

you arrive at some linear distance.

Be careful magnetometer is going to be very noisy and as I told you the handle shaking

can give you a lot of disturbance. So, you need to do proper thresholding and once you

do that you know yes, I have taken the left turn, I have taken a right turn or I have done

nothing, I am proceeding straight and so on and so forth. Then, take that x y, now if you

ask yourself where I am! What should you do? Take this x y; you have the original X, Y

which you got from the UTM conversion of latitude and longitude, add it like an offset

back to it and then, put it back on the map. Then, you know exactly where you are. So,

this is the core idea that you have to follow if you want to do all of this. Let us see

whether this code that we were talking of actually does all what I said as a in a summary.

Let me point you before showing you C code, let me just point you to what all you

should look for in the C code because it is just going to give you some C code, some

variables and some you know for loops and so on which is perhaps of not much

consequence at the moment. So, you must get the high level picture of what is

happening.

(Refer Slide Time: 07:52)

So, let me point you above figure. Here is the algorithm of interest that is what we want

to do.

First step is as I said get hold of the Lat, long of the last GPS coordinate and I have

marked here that Lat, long is required for all Google maps. If you want to put back

anything into Google map, you will have to do it with latitude and longitude and

therefore, you will have to get hold of conversion which will come to later. So, you have

the last latitude longitude step number 1, store it safely and pass it through UTM and

store the original X, Y carefully somewhere.

Next step Sensor output. What are the two sensors? You have the Hall Effect sensor and

you have the Magnetometer sensor. Two variables you will find in the C-code; one is

called the distarr, (distance array essentially) and then the magnetometer thetarr.

Essentially the third step will be all. Zeros from distance will have to be removed as

well.

Sometimes even the hall-effect sensor will give you some kind of numbers which are

quite vague; not just filtering with respect to magnetometer, but also you have to remove

the zeros coming from the Hall Effect. Of course, that number will depend on what is the

circumference of the cycle and how often it repeats that and some sort of cumulative

count which will have to come because of the wheel rotations.

So, I have shown (in above figure) you a cycle wheel and every time a 1 rotation

happens you get a pulse. So, you start putting it into this distance array, you count that

and then you put the next count which will be the first count plus the next count that is

after 2 rotations. Then third one will be the first, second and third and so on and so forth.

You go on this way you start cumulatively counting and you actually come to the linear

distance that is the key objective. I have written you must know the radius of the wheel

and therefore, I expect you to do this calculation and then, find out the linear distance.

Now for magnetometer. We mentioned do you already that it is with respect to earth’s

magnetic north that it gives you a number which is also in some degrees. So, you will see

that 45 degree means essentially the vehicle or bicycle is moving in the north east

direction and so on and so forth.

(Refer Slide Time: 10:53)

Actually before you do any of that cleaning up process, you have to do this forth one

which is where am I you want to know!. So, magnetometer is going to tell you

something about where you are with respect to the existing sensor based system. So, you

again rely on the magnetometer. You know where you have lost the GPS, exactly there

what was the magnetometer reading you take. Supposing it read a value which is 180 in

the experiment that you do, it can be anything; it can give you 270.Some value it will

give you, take that as 0; then, you start converting convert everything to positive values

because negative values does not make sense, you will see that in code and use that

starting magnetometer value which you have made it has 0. Use this 180 degree as an

offset and start subtracting this offset from the starting point.

So, somehow your magnetometer is keeping track of the direction essentially. So, this is

when you say reference, your magnetometer is now calibrated with respect to the GPS

and the particular direction in which you are proceeding. So, your starting by saying

everything is 0 now and from here I will start tracking the magnetometer accordingly

that is what you are saying in step number 4.

Now come to step number 5; left turn, right turn, right about turn all these are very good

possibilities. Again you are to be dependent on the magnetometer to get to know where

you actually turned. I told you about that problem you can be just moving your handle

and creating a situation where the magnetometer is giving you out values after you have

done this 0; after you done this 0 calibration its giving you some values. It is not going to

make sense if you are not getting pulses, which means all those have to be discarded.

So, this decision making process is a very important thing. Here you have to do some

kind of thresholding. In the example that I am going to show you thetarr is between 45

degrees and 135 degrees; then, you say you have done a 90 degree turn if it is between

225 degrees and 315 degrees I’m saying I have done a left turn .

Actually you do the experiment, you do this 0 calibration and then, you turn and see

what actually happens and put those values into your code. Also this 180; in my case it is

180 when you started with the last known GPS value and you want your magnetometer

to keep track of the direction, it may be something. It may be 40; it maybe 30; it maybe

20, whatever that you make it 0 and then you start from there. That is the point of doing

this referencing part.

Now, you are getting an array of magnetometer values. So, you to repeat for all values of

thetarr, that you collected except that the second value of the array of magnetometer

values that you have will have to be with respect to the first one. So, you take a

difference of the first one. The third value in the array will be a difference with respect to

the second one. The fourth one will be with respect to the third one and so on and so

forth. And therefore, because you have to keep track dynamically.

So, the first one you put thresholding and then thresholding anyway is what you are

trying to say about your turns and all that and then remaining parts, you all have to keep

doing this by taking the difference of the third, the second with the first and then

applying this rule back. You apply this rule back after you take the difference for second

values onward, and then, you will definitely arrive at some reasonable X, Y position.

(Refer Slide Time: 15:15)

So, then what you do after that is pretty straight forward. Remember your last known

GPS coordinate was the latitude longitude. You have now passes it through this UTM,

then you got the original X, Y. I meant the last known X, Y as with respect to GPS and

then you did all this wheel rotations with distarr and thetarr; you found out what is the

linear distance ,angle and all that and then you arrived at the new X, Y. The new X, Y

again we have to pass through this UTM and then you will you will have to get back to

the GPS coordinates on the map.

So, that is the key take away. So, point when you do this step, that is get the new X, Y

and put it back into pass through the UTM routine and get back the GPS coordinates will

actually say this is actually the final step where a human wants to ask the question where

am I, when you ask this question, this conversion that happened and it will nicely show

you on Google map, the current position even without GPS.

So, that is the nice thing about this little application. So, let us not run through the code. I

will show you some C code, Let us point out to some important things with respect to the

understanding that we have.

(Refer Slide Time: 17:07)

So, let us say I have to now show you the last GPS latitude and longitude. In above

figure the last GPS coordinate is commented as DESE (that’s our experiments starting

point) so, store this somehow. You have seen that the two variables are mentioned

lat_init and long _init.

Now let us go to step two which is the sensor output. There are two variables; distarr and

thetarr. One is the Hall Effect sensor and the other is Magnetometer. Look at the Hall

Effect which is essentially the distance array, look very carefully there are no zeros there.

You will see a lot of zeros. So, you have to design your own algorithm to get rid of the

zeros and put it there. So, that is distance array.

In theta array, is the second one which is telling you the magnetometer values. Here it is

telling you different degrees 272.45, 261.74 and so on. So, it is actually giving you all

the magnetometer values.

(Refer Slide Time: 18:53)

Let us look at the next filtering step which is the magnetometer should be made 0. At the

point when you have your last GPS coordinate. I mention to you at the point when I lost

the GPS, the magnetometer read 180 degrees.

Now, you see what is shown in above figure?

var_temp = thetarr[i] -180

In your case it can be something else. Essentially if you do that, you are making your

system back to 0. Everything is nicely done and then you convert into all positive values

all that can see that temp+360 and all that is shown here.

So, it is essentially converting everything to positive values. Now is the issue of decision

making. Lot of noise coming from the magnetometer; do it very carefully. Set your own

threshold; left turn, right turn, right about turn and all that will have to be taken care

because you are cycling and then you are moving forward.

(Refer Slide Time: 20:05)

So, there can be left turns and right turns. Threshold setting is important. Look at thetarr

in the above figure, line number 79, it should lie between 45 degree and 135 degrees. To

tell you that it is a right turn of 90 degree right turn. Now let us take at left turn. Theta

array should be between 225 degrees and 315 degrees, (in line number 103).That is a left

turn.

So, again this decision making is what we have found for the terrain that we are trying to

sort of find the location without GPS, but you will have to try on your own for your on

terrain and for your own localisation application.

 (Refer Slide Time: 21:37)

You should be able to essentially get hold of the X, Y coordinates from the last GPS

coordinate that you have, there is the next is the new X, Y which we have to convert

back into GPS.

(Refer Slide Time: 22:38)

In MapLatLonToXY, the first part that is you take the map coordinates latitude and

longitude and convert it to X, Y; this part is show in above figure. Now you can also do

map X, Y to lat long, which is shown in the below figure.

So, you can see both the routines are shown and I encourage you to look at these

application and then, you will be able to essentially localise quite accurately provided

you do all these steps which I broadly discuss mentioned.

(Refer Slide Time: 22:50)

So, in summary you need those nice little what shall I say pin up board markers. So, you

might have seen that equivalent in electronic form on Google maps.

So, that is this function that you see here in the above figure is the updated marker

function which will just take the converted lat long from this UTM application where

you converted X, Y to lat long and then, call this function updatedMarker with a simple

Google API call, you should be able to put back that pin on the map that is what we saw

in the slides as well. You saw a set of pins and those pins essentially are from this part of

the function call.

So, hopefully you can try this and then improve on this existing code which will be made

in open source.

