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Density of states 

 

Welcome back. So, today is the third lecture of this course. In the last class, we had done 

quite a few of things. We had introduced the concepts of Fermi function which is the 

probability of finding an electron at an energy. We introduced the concept of Fermi 

level. We said that Fermi level is a statistical construct, where there is a 50 percent 

probability of finding an electron at any temperature ok. 

We also elaborated on the E-K diagram in the presence of the real crystals you know the 

how electrons move into real crystal, and how the E-K diagram can capture the physics 

of electron transport by summarizing everything in an effective mass term ok. We can 

designate the effective mass of electron as m star, which will basically take into account 

the effect of the band structure the quantum mechanics of the transport. So, we do not 

have to worry, so much we can apply classical equation to that. 

We also introduce some very important concept required for this entire course that is 

hole. We say that when electron goes from a valence band to conduction band for 

example, it leaves behind a vacancy that vacancy is called hole, it is like a quasi-particle. 

And it moves in the direction of the applied field, so it has a positive charge and holes 

are actually absence of electron, but it is convenient to model them as particles. 

And so it hole has its own effective mass, hole has its own E-K diagram, and from the 

EK diagram if the valence band in the conduction band, they are the that the peak and 

peak positions at the same K, then we call it direct band gap, we call it indirect band gap, 

if they are not in the same position. So, all these things we discussed you know how 

indirect band gap, semiconductor like silicon cannot be used for making LED. 

So, all the white light LED’s that you see in the town, in the market everywhere those are 

not made of silicon, because silicon cannot emit light. You need a direct band gap 

material, I told you that a direct band gap material if it has an energy of band gap Eg, 



then the wavelength of the light that is emitted also will be will give you HC by lambda 

will be easy the band gap material ok. 

So, now I told you that the most important thing after that to learn today is density of 

states. So, we shall introduce density of states, and we shall introduce the concepts of 

doping. So, then we are basically ready to understand how electrons and holes fill up the 

bands, and how carrier transport takes place ok. So, will come through the whiteboard, 

and start off density of states. [FL] 
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So, you might see in the last class you know, I told you that there is Fermi function, 

which gives you probability right which gives you the probability of finding electron. 

And then density of states is another very important concept. And together Fermi 

function and density of states, you can find out the number of electrons or number of 

holes ok.  

And you need to know the number of electrons and holes, because only then you can find 

out the current density. And only when you can find out the current density, you can 

actually talk about devices right. Any device carries current right, whether it is a solar 

cell or BJT does not matter. So, we need to understand, how many electrons holes are 

there for that we need density of states. And we need the Fermi function, we derive the 

Fermi function, the Fermi probability in a very simplistic manner, and density of states is 

something will talk about right now ok.  
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So, what actually is density of states, it is a very interesting concept right. Density of 

states: density of states actually means, if you know think about it, it means actually the 

number of states, the number of states available number of states energy states available 

per unit energy per unit volume ok.  

So, in each unit volume per unit energy, how many energy states are there ok, how many 

states are there, which electrons can occupy? Now, this is a function of energy, I will call 

it g of E ok, this is a function of energy ok. And there are very very interesting ways to 

derive the expression as to how many states can be there, and for that you have to take 

help of k space the reciprocal space you take like a sphere, and then you find out how 

many discrete states are there and so on. 

So, the derivation of the density of states is something, we will not do here I can I will 

put it up in my notes, which I will upload. So, you can study the notes. But, in general 

the density of states you know it is a number of available states. So, if the number of 

available states is for example: 10 to the power 19 states are there we in per unit energy, 

per unit volume, we will call it per electron volt per centimeter cube. So, the unit of 

density of states is per electron volt, per centimeter cube.  

And if there is a 10 to the power 19 so, we know that a 10 to power 19 states per energy, 

unit energy per centimeter cube. One thing to note here is that in semiconductor devices 

or in semiconductor physics from the device point of view the units that are used are C G 



S units not the M K S units, we use C G S units. So, it is always centimeter and not meter 

that we use. 

So, for example, if we talk about the number of electrons or number of holes, then we 

normalize it with respect to volume. So, it will be number of electrons per centimeter 

cube or number of holes per centimeter cube, which means you know in 1 by 1 

centimeter in 1 by 1 centimeter cube, 1 centimeter by 1 centimeter, how many electrons 

would be there. For example that is how we give the nomenclature of the units in 

semiconductor devices we do not generally use meter ok. So, similarly capacitance will 

be farad per centimeter farad per centimeter square. 

For example, so this is something we should keep in mind ok, because it will be useful in 

doing calculations and numericals later on. So, I told you the density of states is the 

number of energy states available per unit energy per unit volume which is you know 

this and it basically has an expression I said that I will not derive it. 
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The density of states has an expression something like  

 

 



Where g(E) is the density of states, m* is the effective mass of electron or hole, E is the 

energy, Ec is the conduction band energy.   

So, if you plot density of states versus E, then you go as square root of it will go as 

square root of E. So, as energy increases the number of available states also increases as 

the square root. The number of available states per unit energy, this is per unit energy per 

unit volume, everything is normalized with respect to volume. 

Remember electron or hole density is also normalized with respect to volume, because 

that is how you should do it I mean if you take a semiconductor crystal, it always makes 

sense to talk about unit volume you normalize to volume [FL]. And I started this not 

from 0, you see this, you see at this point I started did not as did not start from this point 

from 0, I started it from some point here. Do you know why, because this point is the 

conduction when E c the bottom of the conduction band. 

What I mean is if I have by the way in semiconductor devices we do not you know from 

the device point of view we do not draw these boxes of convection band in valence band 

that we do not do. What we do in is a convention it is just an you know the way it is 

designated in semiconductor device physics. We just put sorry we just put a straight line 

as conduction band and a straight line as valence band. Here the gap between them is 

your energy band gap. 

What this straight line means is actually the bottom energy band, this is the top of the 

valence band, this is the bottom of the conduction band. If you recall your E-K diagram 

right, this is E, this is k right. So, this bottom is actually this that is representative with 

respect to position. And this is this bottom most position is where your conduction band 

starts, below that there is no conduction band right. So, this position actually corresponds 

to this. What it means is that only from only from the bottom of the conduction band you 

can start filling up, you cannot fill up below it because below there is gap there is no 

nothing right. 

So, below this portion below you cannot have any density of states. Why, because there 

are no states within the band gap you only have states here in the conduction band right. 

So, it starts from here ok. So, essentially it is E minus E c [FL] E c is the bottom the 

conduction band. So, only it starts filling from the bottom the conduction band, it cannot 

fill below the conduction become because this is gap, nothing is here right. 
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So, similarly, similarly for holes I told you right you have this k and then you have the 

hole here, I am not very good at drawing, but the thing it is a parabola here. So, this is 

the bottom of the conduction band at k equal to 0. So, you know for holes also it will be 

same thing  

 

 

Where m*
h hole effective mass, Ev the top of the valence band, E is the energy. 

 So, more negative it is like the higher energy it is so E v minus any point here for 

example,. So, it goes as square root of the E. So, this gives you an idea of the density of 

states how many states are available, how many states are available for electrons or for 

holes right electrons or for holes to for the electrons and holes to occupy the conduction 

band and valence band right. 

So, now, we have two things right. So, now, you know what is density of states, we 

know density of states I call it D O S, density of states which is essentially g of E ok. 

And then the number two is the Fermi function Fermi function which is given by f of E. 

So, essentially if I talk about electrons, for example, I talk about electrons right, 

electrons, if I talk about, and how many electrons are there total number of electrons that 



are there in a conduction band will actually depend on the product of density of states 

and the Fermi function sorry and the Fermi function integrated over the entire energy 

from the bottom of the conduction band here from here to infinity E c, this bottom here 

to infinity. 

This gives you the total number of electrons which I will call n ok. This gives you the 

total number of electrons n; and the unit is per centimeter cube. This is the energy 

electron volt; this has no unit. This is per unit energy per unit centimeter cube, so the unit 

is per centimeter cube this gives you the number of. What is actually happening, it 

basically tells you how many states are there, how many states are available right, how 

many states are available that is the first question multiplied by what is the probability 

that you will occupy those states what is the probability that states are occupied those 

energy states are occupied right. 

So, essentially the product of how many empty states or how many energy states are 

there times what is the probability that those states will be occupied. The product of 

these two function if you take the integration over energy from this bottom to conduction 

band to enter infinity, then you get the number of electrons that is what is happening here 

ok. And it is a very easy concept interesting concept will not lose track of sight. We will 

always recap what we are doing, so that we do not lose track of sight. 
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So, for example, you know essentially under energy exists if this is the energy this is E c 

for example, your density of states will start only from here g of E. And similarly this is 

holes for example, the band gap is this one right, this is the band gap ok, this is g of E for 

holes. Holes also have their own density of states, electrons also have their own density 

of states, because it depends on effective mass m star of electron and hole and that is 

different. So, let electron and hole density of states also be slightly different because the 

effective ones are different, this is your density of states. You have to multiply by the 

Fermi function, you have to multiply by the Fermi function. 

So, of course, the Fermi function depends you know on the Fermi level also. So, how 

does the Fermi level go you know above the conduction band, you should not have 

generally electrons, but you know the Fermi function for electrons for example, will go 

something like this you know below the conduction band everything you know the idea 

is that your electrons will be if you take the Fermi level can be maximum here then it 

will be something like this that is a Fermi level it is a Fermi function the probability its 

very high probability. It is almost 100 percent probability electrons will be in valence 

band actually, the electrons will be in valence band right.  

So, there is a almost 100 percent probability electrons will be in valence band. At 

absolute 0 of course, nothing will be in conduction band, but at finite room temperature 

there will be small tail I told you right in the last class. So, in small temperature in a 

finite temperature there will be slight this right. [FL] above E c also there will be some 

electrons that is the probability will be there that is what at finite temperature it means. 

At 0 Kelvin, it will be just a rectangle ok.  

So, if you take the product of this red and blue, you get this green thing here this one 

right. How it looks like you know it looks like this is E c, you know. So, it will look like 

this, the product of these two one of them is decreasing one of them is increasing. 

Similarly, this is E v, you will have something like this. So, this is actually your electrons 

that are there in the conduction band. This is actually your holes that are there in your 

valence band. And this is your energy band gap Eg ok, there is some electrons here, there 

is some holes here ok. 

I am talking about at say room temperature which is say 300 Kelvin. At 0 Kelvin of 

course, you cannot have anything you know at finite temperature will always have 



something ok. So, you have electrons in the conduction a little bit, you have holes at the 

valence band little bit, this is at room temperature. So, see there is a very critical thing at 

any temperature other than 0 Kelvin. At lower temperature, this will become smaller; at 

higher temperature this will become larger that is different thing, but at room 

temperature it will have it will be some amount right. 

So, you see at room temperature at 300 Kelvin, it seems like there is always a finite 

number, there will always be a finite number of electrons in conduction band right, and 

there is a finite number of holes in valence band. This is a very important you know 

profound finding actually if you think it deeply. So, at room temperature I have not 

added any intentional impurity, I have not added any I am not shining any light not 

applied any magnetic field nothing, just a semiconductor crystal a semiconductor wafer 

in equilibrium, at room temperature I have not done anything to it. But still there is some 

electron that will be there, some hole that will be there in the valence band. 

Do you know why, I told you this comes from the density of states and the Fermi 

function. So, density of states increases with energy above conduction band you know so 

this you see what I am trying to say essentially is that you have the E-K diagram here 

right this is E c of course, you know this is your k diagram. So, density of states 

increases as you go up, but a Fermi distribution dies down as you go up because all the 

electrons will be in valance band only. So, there is very few probability that electrons 

will be there. So, the Fermi probability comes down like this ok. So, the product of these 

two gives you this actually hump ok. So, now, that will answer our very fundamental 

question that we had raised some time back. 
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And that is if this is your conduction band and this is your valence band for say I will 

take silicon I will take silicon for example, whose band gap this is 1.1 electron volt it is a 

huge band gap I mean it is some decent band gap. Room temperature energy k, 

Boltzmann times temperature at room temperature is only 0.026 E v. So, the electrons 

that are there in the valence band, this is valence band right, they only have energy of 

0.026 electron volt.  

With this small energy thermal energy this is the thermal energy provided by the room 

temperature right, thermal vibration. So, 0.026 electron volt with that kind of small 

energy, how can electrons jump this huge barrier of 1.1 E v, because 1.1 is very large, 

1.1 is very large very very large compared to 0.026. And in semiconductor in all these 

energy processes everything actually goes exponentially ok. So, this is a huge change 

exponentially it will go. So, it will go e to the power 1.1 by 0.026 that is the actually that 

is the probability that electrons will actually surmount the barrier ok. 

So, this is very very small probability that electrons can actually which 0.026 e v small 

energy, it is very small probability their electrons will be able to surmount from the 

conduction band sorry valence band to the conduction band. Despite that there is always 

a finite number of electrons here and there is always a finite number of holes here that is 

obvious from the figure that I had drawn in the last slide you see this figure. There is 

always some electron, this electron corresponds to the edge of the conduction band, this 



is at the edge of the valence band holes. So, they always those electrons and holes 

actually exist here, electrons exist here holes exist here. 

Despite a very very low probability that electrons can hop you know jump across this 

barrier and that is because of the fact that density of states is multiplied by the Fermi 

function, it is not only probability. It is not only probability that electrons will go from 

valence band to conduction band, it is also how many energy states are there that the 

probability and that energy states has to be multiplied. And it seems like when you 

multiply and take an integration, there is actually a finite number you know it is much 

less than the Avogadro number of course is much much less than what is the atomic 

density. 

So, for example, silicon might have 10 to the power 23 atoms right per centimeter cube 

per centimeter cube of volume you have so many atoms. But the probability is very low 

that electrons you know will jump from one to the other thing. So, actually the number of 

electrons that will be able to jump because of this probability times the density of states 

function is only 10 to the power 10. So, you will have 10 to the power 10 electrons close 

to 10 to the power how does it come I will tell you ok, 10 to the power 10 electrons will 

be there approximately per centimeter cube in the conduction band. 

And similarly 10 to the power 10 holes also will be there per centimeter cube in the 

valence band at room temperature. So, this is a much smaller number 10 to the 10 is a 

much smaller number compared to the atomic density ok. If one atom was to give one 

electron, then there should be 10 to power 23 but that is not possible because this gap is 

huge right. 

So, the probability times the density of states gives you a realistic number of how many 

electrons are there here, how many holes are there here, it turns out that is around 10 to 

power 10 electrons and 10 to the power 10 holes that are actually there right. So, this 

number will derive how we derived that will come to there ok. So, now, before that I was 

actually in this if you recall I was telling you about the expression here right. So this 

expression, if you look into this expression, let us recall again holes also will have a 

similar expression, but we are talking about electrons here. So, first we will talk about 

electrons and holes will become the same thing. 
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So, I telling you that electron at room temperature for example, at room temperature 

electrons in silicon we talking about silicon I need a semiconductor it is given by  

 

Where Ec the bottom of the conduction band, g(E) the density of states right and f(E) the 

Fermi function. 

So, now if you do that calculation of course, we do not want to completely solve the 

integral here that is their mathematica and other functions to do that. It so happens that 

the density of states function is given by  

  

Where EC is the minimum of conduction band, m*
h hole effective mass, EF is the Fermi 

function, kB is the Boltzmann constant, T is the temperature.  

Now, this is an integration that we have to do actually. Ah And then this is a complicated 

integration that can be simplified by substituting some values, we will not do that. But 

eventually if you do that, what will come you know n will be equal to some number N c, 



I will come to that quickly into a Fermi integral of the half order of E F minus E C by k 

B T. Let us pause a second and go it into it. 

This is actually an argument of the function ok. This F half you know this F half this is a 

Fermi integral this is actually Fermi integral of half order. So, it is like F of half, it is a 

Fermi integral of half order you can put any x there. So, this x is actually this E F minus 

E C by k T ok, so Fermi level. So, if this is your conduction band, this is your valence 

band, Fermi level could be anywhere. The Fermi level could be anywhere say it could be 

here, I will come to the explanation later on ok, Fermi level could be anywhere. 

So, E F minus E c, so this gap negative of this gap E f minus E c divided by k T that is 

your x the argument here right. So, there are tables in an internet also you can find out, if 

you know this value if you know this gap divided by k T, k T of course, you know 0.026. 

So, if you know this gap divided by k T, a negative of that of course, then you can find 

out that is x basically. So, F of the half of integral of that you can find out from table so 

internet also and then you multiply with something called N c, I will come to that, then 

gives you n this is a very simplified expression. And this basically takes into account that 

is entire integral that is there ok. 
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So, there are two things, number one thing is: what is actually N c? N c is called the 

effective I am talking about electrons right. So, it will be effective conduction band 

effective conduction band density of states. And the unit of N c is per centimeter cube, it 



is not per centimeter cube per E v, it is just per centimeter cube. It is called effective 

conduction band density of states. 

What it means is that if this is the number of energy states at the bottom of the 

conduction band. So, if I have a E c and this is k, so the number of states at the bottom of 

the conduction band here which when multiplied by F of E here at this point will give 

you the number of electrons that are there at the bottom of the conduction band ok. So, it 

basically means that sort of you can say this is the effective density of states 

corresponding to the bottom of the conduction band, and its unit is per centimeter cube 

that is what it means. 

And actually Nc has a very nice expression and that is given  

 

Where m*
e is electron effective mass, m*

h is hole effective mass, kB is the Boltzmann 

constant, T is the temperature.  

So, you see this is actually density of effective density of states conduction band density 

of states this depends on the effective mass of electron. So, if the effective mass of 

electron is more, your density of states at the conduction band edge also will be more it 

is understood, it also depends on temperature. If you increase the temperature their 

number conduction band density of states also will increase. 

Similarly, you will have an N v and this is conduction band density of states, and this is 

effective valence band effective density of states. You can say valence band effective 

density of states. So, it is also like the density of states at the edge of the valence band 

here ok, and its unit also n v in is also is per centimeter cube ok. And this is given by  

 

Where m*
h is hole effective mass, kB is the Boltzmann constant, T is the temperature.  

So, this density of states conduction band density of state valence band density of states 

are numbers that can be precisely estimated or determine for different semiconductor 



crystal. Because if you know the effective mass you know the temperature then, you are 

done you can find out. And physically this represents the number electrons you can say 

that are actually at the edge of the conduction band. If you multiply the density of states 

times the if you multiply this by the probability of finding the electron there it will give 

you that it is a very large number in general, but this is your effective conduction band 

density of states. 

So, what as I talking about? I was talking about this thing you know you have you have 

your total electron concentration as your effective density of states conduction band 

density of states ok, this is per centimeter cube remember. Fermi Dirac integral has no 

unit. And this is Fermi Dirac integral of x, where x is equal to E F minus E c by k B T 

ok. Now, this looks little daunting or mathematically little scary, but do not be scared 

actually because this is a very simple expression that a lot of things can be inferred for 

the from this ok. 
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So, now in a material in a material, so this is a in a semiconductor material. This is 

conduction band; this is valence band ok. Exactly at the middle this is suppose the band 

gap of the material which is 1.1 e v, which is the band gap. You think of exactly the 

middle almost the middle ok, this is the middle of the band gap. And this is Eg by 2 like 

this is 1.1 by 2. So, this will be 0.55 sorry this will be say 0.55 e v this will be also 0.55 

ok. 



So, if the Fermi level, if the Fermi level is somewhere here in the upper half, if the Fermi 

level is in the upper half is in the upper half, what does it mean? You know if the Fermi 

level is in upper half it means suppose the Fermi level is here ok, I will talk about Fermi 

level. Suppose this is a Fermi level ok, suppose this is a Fermi level E F. It means the 

probability of finding the electron is 50 percent at this level ok, it means the probability 

of finding the electron is 50 percent in this level that probability the fifty percent 

probability of finding the electron is closer to conduction band than to valence band. 

What it means physically is that, there is a higher likelihood that there will be more 

electrons here there will be more electrons here than there are holes here. So, if this is the 

case, then the material has the material has or the semiconductor has for whatever reason 

more electrons more electrons ok, it has more electrons than holes and vice versa. Which 

means if the Fermi level if the Fermi level is in the bottom half say if the Fermi level is 

suppose here it means 50 percent probability of finding electron is actually here which 

means the 50 percent probability of finding electron is closer to valence band than to 

conduction band that means, there will be fewer electrons here, but more holes here in 

the valence band. In that case if the Fermi level is in the lower half, it means there will be 

more holes than electrons there be more holes than electrons that we should keep that in 

mind. 

So, whereas I, yeah I was here right. So, there will be more electrons and holes. So, these 

are very unique things actually when a material or a semiconductor has more electrons 

than holes, we call it n-type semiconductor ok, there are more electrons. And if your 

material has more holes than electrons we call it p-type p-charge right, when there are 

more holes than electrons more holes than electrons and the Fermi level is in the lower 

half.  

So, that means, there are more holes with the probability of finding the electron is closer 

to valence band and valence band is always filled up with electrons right. So, it means 

there will be much fewer electrons in the conduction band, more holes in the valence 

band; so, more holes than electrons means that the material is p-type and more electrons 

than holes means that the material is n-type. 

Now, you cannot we cannot arbitrarily have higher electrons than holes or higher holes 

and electrons. We have to add essential external impurities to do that. If you do not add 



the external impurities, then what will have you know suppose you do not add any 

impurity, no light is shining, no magnetic field is applied nothing, no electric field is 

applied nothing, then ideally the electron and hole concentration will be identical ok. So, 

what I am trying to say is that let us come to a new page here. 
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I told you this is a conduction band; this is your valence band. You take exactly the 

middle here that level is called E i is exactly middle here right. This is Eg by 2; this is Eg 

by 2 ok. If your semiconductor does not have any external impurity, no light is shining, 

no electric magnetic field, and it is in equilibrium, it is equilibrium and no external 

impurities have been added ok, no external impurities have been added nothing has been 

done. It is a pristine a pure crystal no impurities are added. So, it is a pristine item it is 

like the pure form of semiconductor right that is called an intrinsic semiconductor, 

intrinsic semiconductor sorry semi conductor ok. 

An intrinsic semiconductor, in an intrinsic semiconductor, the number of electrons is 

exactly equal to the number of holes. I told you the electrons are here in the valence 

band. Because, of thermal energy k T there is a probability that they might go up very 

small probability, but because of density of states remember, I keep telling about density 

of states every, every often right. 

Because of density of states there will be a finite number of electrons this hump you see 

there will be finite number of holes here right the area under this electron and hole curve 



will be the same actually you see. There will always be some electron that will try to go 

there and leaving behind hole. So, the number of electrons that are formed in the 

conduction band has to be equal to the number of vacancies left behind in this right, 

because if 10 electrons go up here then 10 holes are remaining. So, number of electrons 

and number of holes has to be exactly same at room temperature for an intrinsic 

semiconductor. And this number comes because of the probability times the density of 

states that are there density of states that are there. 

So, you see here the number of electrons and number of holes has to be exactly equal we 

call that n i, it means intrinsic carrier concentration it is called intrinsic carrier 

concentration. So, now this is a very interesting we are entering into very very interesting 

and exciting semiconductor device concepts. So, let me wrap up the class today here 

lecture will wrap up the class here. And the next class will start from here ok. The 

electrons and holes are equal in an intrinsic semiconductor. So, in what case will 

electrons be more than holes, or in what case will holes be more in electrons that is 

important right p-type and n-type semiconductor, we will start from there ok. 

So thank you for your time, here again we will wrap up the class today with the concept 

of intrinsic semiconductor ok. 

Thank you. 


