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Hello everyone, welcome to the course Semiconductor Devices and Circuits. We have

headed towards the end of the course.

(Refer Slide Time: 00:21)

So, we thought we will take a tutorial session for the remaining two or three lectures.

Hope you have enjoyed the course. 
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We have designed the Tutorial Session in such a way that you will get many problems

from the assignments and we will introduce some new concepts also so that overall it

will give you a recap of the entire course. So, let us first jump into the first problem; this

from the quantum mechanics.

The problem states that an electron is confined to an infinite 1D potential well of width L

extended from x equal  to 0 to x is  equal  to L.  So, first  is  you have to  find out the

probability of finding the electron between x equal to 0 and x equal to L by 3 at the

ground state. And second one is the electron if the electron jumps from the n equal to 3

energy level  to  the  ground state  energy level  and in  doing so,  it  emits  a  photon of

wavelength 20.9 nanometer then what will be the width of the well?

So, there are few things you have to note down here. First is the infinite 1D potential

well which has been covered in the course, in the first topic. That first topic was that

quantum mechanics  infinite  1D potential  well.  Second thing  is  basically  the  well  is

extended from x equal to 0 to x equal to L. Now, the first problem states that you have to

find the probability of finding the electron between x equal to 0 and x equal to L by 3 at

the ground state.

So, just recall the wave function of the 1D potential, infinite 1D potential well. If the

particle is at nth state then the wave function is given by psi n x equal to root over 2 by L

sin  integral  multiple  of  pi  by  L  into  x.  Where  basically,  n  is  any  integer  and  the



corresponding energy of the n th sate is given by En is equal to n square pi square h quart

square by twice mL square. 
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So now, as the; so first thing is the; what will be the ground state? Ground state will

correspond to n equal to 1. Just remember n is equal to 0 is not the ground state because

if we put n equal to 0 in this equation, here this wave function will vanish because sin 0

is equal to 0. So, and also the energy will become 0. So, n equal to 0 is not any valid

state. So, n equal to 1 is your first state and that is why you call it a ground state. Now,

probability of finding the electron per unit length at x is given by modulus of psi 1 x

whole square and this nothing but your pdf, probability density function.

So, the probability of finding the particle or the electron here between x and x plus dx

will be given by mod psi 1 x whole square into dx. That is pdf into dx because you want

to find the probability between x and x plus dx. So, this is your dx length. So, what will

be the probability of finding the electron between this dx length that is given by this

expression? So, the probability of finding the electron between 0 and L by 3, you have to

basically integrate this expression from 0 to L by 3.

So,  just  go  through  the  steps  few  steps  here.  So,  integrate  from 0  to  L by  3.  So,

magnitude of psi 1 x whole square will be given by 2 by L then, sin square pi x by L. So,

you have to convert this sin square to cos 2x in order to do the integration. So, that will

come as a standard integral. So, 2 by L integration over 0 to L by 3, you can take this 2



inside. So, it will become 2 sin square. So, basically 2 sin square theta that is equal to 1

minus cos 2 theta. So, you have to plug in here 1 minus cos I will just erase this one this

mid space 
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cos 2 pi x by L, there will be one dx. So, if you do this integration it will come as 1 by L.

Here it will be x minus. So, you have to do the integration of this. It will be L by 2 pi sin,

integral of cos is sin 2 pi x by L.

So, your limit you have to put the limit from 0 to L by 3. So, now just look into this

expression, if you put 0 both will be 0; this two term. So, you have to put this L by 3. So,

only L by 3, the upper limit will that will give you some value, L by 3 minus L by 2 pi

sin 2 pi by 3. So, you just cancel out L here. So, it will come as one-third minus 1 by 2 pi

sin 2 pi by 3.

So,  if  you just  calculate  this,  this  probability  will  come as  0.2;  just  check this  with

calculator. So, what is the next problem? It was if the electron jumps from n equal to 3

energy level to the ground state energy level, so, again from n is equal to 3 to n is equal

to 1 your ground state corresponds to n equal to 1.
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So, basically, En that is given by this expression that is the energy of n-th state. So, if it

jumps from n equal to 3 to n equal to 1, it emits an energy which corresponds to del E is

equal to pi square h quartz square by twice mL square into n equal to 3 square minus n

equal to 1 square. So, it will give you some expression here.

Now, this energy is basically as it emits a photon, so this energy should be equal to the

energy of the released photon. So, photon energy then is given by E ph photon energy,

this photon energy. This is equal to hc by lambda and that should be equal to the energy

of that released energy. So, hc by lambda should be equal to 4 pi square h quarts square

by mL square. So, let us just do some simple algebra here; hc by lambda. This is equal to

4 pi square by mL square.

Let us convert this h quart into h by 2 pi; h quart this is just a reduced Planck’s constant.

So, this is equal to h by 2 pi. Let us plug in this expression here, h square by 4 pi square.

So, this will be cancelled out, one h we can cancel here, L will become equal to h lambda

by  mc  ok.  So  now, you  just  plug  in  the  numbers  given  in  the  problem.  So,  your

wavelength is given as 20.9 nanometers. So, lambda is equal to 20.9 nanometer; h is the

Planck’s constant whose value is given by 6.626 E minus 3; 34, m will be the mass of the

electron; c will be the velocity of light in free space.

So, if you plug in those numbers that L will come as 0.225 nano meter. So, that is the

width of your infinite 1D potential well.
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So, now let us come into the next problem. This is from the semiconductor basics and

this basically deals with the continuity equation. This also was given in as an assignment

problem. So, I thought we could discuss in details that problem here. The problem states

that assume a p-type silicon sample with the following parameters at room temperature

300 Kelvin. So, 300 Kelvin means, the thermal voltage here will be equal to 0.026 volt.

Some parameters are given for example, the doping density that is NA is equal to 10 to

the power 17 per cc. Mobility of the electron is equal to 300 centimeter square per volt

second and tau n equal to 1 microsecond. Just remember here electron is your minority

carrier.

Because it is a p-type silicon and the sample is uniformly eliminated with light from the

top  as  shown in  this  figure.  So  here,  light  is  coming  and  basically  absorbing  those

photons, electron hole pairs are generating. In this generation rate is also given optical

generation rate is GL 10 to the power 24 per centimeter cube per second. So, 1 constraint

here is given as the incoming photons are absorbed in a thin layer of 10 nanaometer of

the surface.  So,  if  we assume here a  10 nanometer  thickness  on the surface,  all  the

photons are absorbed over this layer.

So, basically what does it mean that there the electron hole pairs are getting generated

over this thin layer only. There is no generation inside the bulk. So, if we consider this is

the x axis then just denote this mark as the x equal to 0. So, inside the bulk means for x



greater than 0, there is no generation of electron hole pairs. So, basically we can say that

this generation rate becomes 0 inside the bulk here. Now, the problem is you have to find

out the steady state excess electron concentration at a certain distance 1 micrometer in

the 2 following cases. 

One is if the sample extends to infinity along the x axis. So, if this dimension a goes to

infinite in the first case and the second case states that if the sample is only 5 micrometer

long along the x axis. So, if this sample has a finite dimension, so, basically in the second

case it is given that this dimension of the device is 5 micrometer and also in the second

case it is given that on the other end, after this 5 micrometer length, there is an ideal

ohmic contact at x equal to L equal to 5 micrometer that always enforces the equilibrium

condition.

We will just discuss this in while solving the problem. So, there 2 assumptions you can

consider here. One is the there is no electric field present inside the bulk and you can

consider the low level  injection.  So, this  will  basically  help you reduce the minority

carrier diffusion equation.
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So, let us try to solve this problem. In the first case where this goes to infinity and in that

case, we can write down the minority carrier diffusion equation for x greater than equal

to 0 as del n t is equal to D n del 2 del n del x square minus del n by tau n plus GL. So,

this is the first equation. So, here del n is the excess minority carrier concentration, that is



the electron concentration and D n is the diffusion coefficient, tau n is the electron life

time and GL is the generation rate. 

Now, so,  basically  what  does  it  state  that  the  electron  this  electron  and  holes  are

generated here and this electrons will diffuse to the bulk according to this following this

relation. So, why we have considered this; because our electric field equal to 0 and if you

recall the continuity equation, we can reduce in case of electric field equal to 0, we can

reduce the equation to only diffusion term. So, that is why this minority carrier diffusion

equation looks like this.

So, assumption is electric field equal to 0 and another assumption is low level injection.

Under these two assumption, the minority carrier diffusion equation can be reduced to

this. Now, the problem ask about the steady state. So, now, when we are talking about the

steady state there will not be any change of a carrier concentration with respect to time.

So, del n del t will become 0, just one second. So, del n del t will become 0 in case of

steady state and other terms will remain.

So,  this  is  the  first  step  where  we  have  reduced  for  the  minority  carrier  diffusion

equation.  The  next  reduction  will  come  when  considering  the  fact  that  there  is  no

generation of electron hole pairs inside the bulk. So, beyond that 10 nanometer thin layer

that generation rate will become 0. So, this will again become 0 for x greater than equal

to 0. So, for x greater than equal to 0, the minority carrier diffusion equation can be

reduced to this final term d 2 d del n dx square minus del n n square is equal to 0. So, just

probably you have noticed one thing that this dou has become now D.

So, basically the partial derivative we have converted to the direct derivative because this

del n, here in this first equation it is a function of x and t, but as we are talking about now

steady state, so, there is no variation of time. Hence, we are considering now del n as a

function of space only. So, there is only a single independent variable and hence we can

convert that partial derivative to the direct derivative d 2 dx square.

So, another thing we have just noticed this Ln. This is the diffusion length that is equal to

root over Dn tau n; this is the diffusion length of the minority carrier that is the electron

here.  Now, so basically we have to solve this  differential  equation under a particular

boundary condition. So, what will be the general solution of this equation?



This general solution will be given as A e to the power x by Ln plus B e to the power

minus x by Ln. So, you just recall your highest you just recall your undergrad maths

where this we consider a trial solution e to the power m x to solve this kind of differential

equation and L end up with this general solution. 

So, now the neat thing is we have to solve this, we have to find out these 2 coefficients A

and B imposing a particular boundary condition. Before that just find out the what are

that these Ln and Dn values from the given parameters, Dn that will be that can be found

using the Einstein’s equation.

Dn is equal to thermal  voltage into the mobility  and that is given by 0.026 into 300

centimetre square per second is equal to 7.8 centimetre square per second. And what will

be the diffusion length? Diffusion length can be found using this equation and that is

given if you plug in those numbers, this Ln is coming as 27.9 micrometer. So, we will

use  this  while  deriving  the  final  answer  ok.  So,  in  the  next  step  we  will  we  will

incorporate the different boundary conditions.
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The first boundary condition will come from the fact that at infinity, so as the sample that

is extended to infinity, so if we approach to infinity the minority carrier concentration,

excess minority carrier concentration will go down to 0 because all these excess minority

carriers that are coming from the thin interface layer to the bulk they will recombine with

the oppositely charged holes and hence the excess minority carrier concentration will go



down to 0. The second boundary condition will coming from the fact that will come from

this surface boundaries.

So, it tells that this minus Dn d del n dx at x equal to 0 this is the rate at which the

electrons they diffuse away from the thin interface thin surface layer to the bulk and this

rate should be equal to the rate at which the electrons are getting generated at the thin

interface layer. GS is basically the generation rate, but this is surface generation rate not

the volume generation rate. So, basically you have to multiply the volume generation rate

with the thickness of that thin layer in order to find what is the number of charge carriers,

that is getting generated per unit area inside that thin semiconductor layer.

So, that is you just plug in those numbers and GS will come as this. Now, you have to

use these two boundary conditions to solve the to find out that these 2 coefficients A and

B in equation 4; del n so that is the general solution del nx equal to A e to the power x by

Ln plus B e to the power minus x by Ln. 

So, first plug in the first boundary condition, del n x tends to infinity that is equal to A e

to the power infinity plus B into e to the power minus infinity and this is equal to 0

according to the boundary condition.  Now this term goes down to 0. So, basically it

comes as A e to the power infinity is equal to 0. So, your A must be equal to 0. So, only

the second term will that will exist, the first term will go down to 0 from the general

solution.

So, now the general solution under the first boundary condition is reduced to this term B

e to the power minus x by Ln. Now, you will use the second boundary condition; second

boundary conditions states that minus Dn d del n dx at x equal to 0 is equal to GS. So,

just  solve  the  second  boundary  condition.  So,  now, your  del  nx  this  is  the  reduced

general solution B to the power minus x by Ln. 
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So,  d  del  n x dx this  is  equal  to  B minus 1 by Ln e to  the power minus x by Ln.

Therefore, d del n x dx at x equal to 0 will be equal to minus B by Ln.

So, let  us plug in this  expression into the second boundary condition minus Dn into

minus B by Ln that is equal to GS minus minus will cancel out. Therefore, B will be GS

by Dn by Ln. So, that is what B comes under the second boundary condition. So, now,

we get the excess carrier concentration profile that is a spatial distribution of the excess

electron concentration that is given by this expression. So, now the you have to just plug

in the numbers.

GS  by  Dn  Ln  you  can  simply  directly  you  can  directly  find  from  the  previously

calculated values of Dn, Ln and GS. So, you plug in those numbers here; x is given as 1

micrometer.  Basically,  you  have  to  find  the  excess  electron  concentration  at  1

micrometer. So,  you plug in that  number here.  You will  find that  what is  the excess

electron concentration at x equal to 1 micrometer.
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Next  part  of  this  problem,  where  it  states  that  you have  to  find  the  excess  electron

concentration again at x equal to 1 micrometer, but here the boundary condition gets

changed because of the finite dimension of the device.

Now, the device dimension becomes L equal to 5 micro meter and this is x equal to 0. So,

instead of infinitely extended device, now the device has a finite dimension and that is

given by L equal to 5 micrometer.

So, this is your starting point that is a minority carrier diffusion equation at steady state

and under the two assumptions that there is no electric field inside the bulk and there is a

low level injection. So, this is the differential equation which dictates the transport of the

minority  carriers  inside  the  bulk that  is  for  x  greater  than equal  to  0.  Now, here as

calculated previously that the diffusion length of the electron is 27.9 micrometer and the

device dimension is given as 5 micrometers. So, if you compare these 2 values, Ln we

can consider as much larger much greater than L.

So,  what  does  it  signify  that  Ln is  basically  the  diffusion  length  that  means,  on  an

average after injecting an electron,  on an average that electron goes 27.9 micrometer

before  it  recombines  with a  hole,  but  we have imposed a  boundary  at  L equal  to  5

micrometer. So,  we can consider that  all  the electrons that are coming from the thin

interface layer to the bulk they will go to the opposite to the electrode which is placed at

l equal to 5 micrometer without recombining with the oppositely charged hole. 



So, basically we can ignore any kind of recombination. So, we can reduce this minority

carrier  diffusion equation further  by considering del  n is  equal  to 0;  that  means,  the

recombination term there is no recombination. So, this recombination term will go down

to 0. So, the minority carrier diffusion equation that gets reduced to this d 2 del n dx

square is equal to 0. So, the general solution of this differential equation is given by del

nx equal to Ax plus B. That is the linear equation.
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Now  the  boundary  conditions,  boundary  conditions  will  be  one  will  be  the  excess

electron concentration at x equal to L will be equal to 0. This is coming from the fact that

at x equal to well, we have considered a perfectly ohmic contact. Now, this ensures that

whatever excess electrons are coming at this point, they will be immediately taken that

will  be immediately  removed by that  electrode.  So,  that  there  a  thermal  equilibrium

condition can exist.

So, your del n at x equal to L becomes 0 because of that perfectly ohmic contact. The

second boundary condition that is coming from the surface,  so, that is similar to the

previous case because again at steady state the generation rate of the electrons inside the

thin semiconductor layer should be equal to the rate at which that is moving away from

the interface to the bulk.

So, this equation gives that boundary condition. So, basically using these two boundary

conditions, now we have to solve this basically you have to find out these 2 coefficients



A and B. So, now the general solution is del n equal to Ax plus B. Plug in the first

boundary condition. It states that del n at x equal to L that is equal to AL plus B that is

equal to 0. Therefore, B is equal to minus AL and if you plug in this into this expression

basically you can reduce further the general solution as del n equal to A into x minus L.

Now you plug in the second boundary condition.  So, second boundary condition will

come from basically you have to differentiate this expression first; A into x minus L. Let

us differentiate this expression first that is equal to A. So, let us plug in this expression

into the second boundary condition minus Dn. Now, this is a constant. So, it does not

matter if whether we are taking at x equal to 0 or at some other x value.

So, you can just plug in directly this number that is equal to GS. So, this will give you

the value of A  that  is  equal  to  minus  GS  by  Dn.  So,  now  the  excess  electron

concentration will come as del nx equal to GS by Dn into L minus x. So, now you have

to just simply calculate the numbers. GS by Dn that is given by GS, we have calculated

in the previous part. That is 1e 18 Dn that is again we have calculated previously as 7.8.

So, GS by Dn is coming with this number. So, now, therefore, del n is given as this GS

by Dn.

So plug in  that  number into L minus x.  L is  here 5 micrometer, so,  5 minus x.  We

basically have constructed this expression such a way that x is in micrometer. So, you

have to convert this into centimetre in order to get the whole expression in per centimetre

cube value. Normally, we express the any concentration as per centimetre cube value. So,

I have converted that micrometer into centimetre 1e minus by multiplying with 1e minus

4.

So, this is the final expression where x is in micrometer. So, now, you just plug in at x

equal  to  1  micrometer  and you will  get  the  answer  for  what  is  the  excess  electron

concentration at x equal to 1 micrometer.


