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So now let  us  try  to  quantify  the number  of  trap  charges  ok.  So,  it  is  not  only the

qualitative understanding of the disordered semiconductor that is important, but also the

methods and the means to quantify these estimates. And from this point on we will study

a lot of the methods and tools used to quantify and calculate carrier concentrations and

therefore, the currents and disordered semiconductor based devices. 

But since the mathematics can get quite involved please keep in mind that the focus is

not to be on the mathematics, but on the general approach to solving these problems. So,

to  start  with  the  primary  difference  between  crystalline  materials  and  disordered

materials  is  the  states  inside  the gap and therefore,  the trapped carrier  concentration

inside the gap. Now inside the gap the trapped carrier concentration is simply the density

of states into the fermi function f of E

In the case of crystalline  material  density  of  states  was 0 and therefore,  the trapped

carrier concentration was 0, but in the case of disordered materials this density of states

has to be defined and a key towards understanding the density of states the key towards



understanding the carrier concentration and disordered semiconductors is the definition

of the density of states. So, on this page let us just look at you know how one would go

about in quantify the density of states.

So, this particular picture is taken from this reference and it  identifies the density of

states picture for amorphous hydrogenated silicon. And such a picture can be developed

for any disordered semiconductor. So, this is just being used as an example. So, in order

to  the  experimentally  estimate  the  density  of  states,  a  one  could  perform  different

experiments  such  as  the  deep  level  transient  inspector  scopy. And one  could  get  an

experimental; one could get experimental confirmation has to what the density of state

distribution is with energy. Now what is shown here is the acceptor like density of states

in the case of this particular material, where this could be considered to be the fermi level

and then you have the acceptor like deep states and you have the acceptor like tail states

and that is your conduction band edge. Now how does one quantify how does one model

the density of states? A very common model  is typically  if you have a density state

distribution that looks like this.

Wherein the deep states the logarithm of the density of states versus energy for the deep

states is like a straight line, and the same holds true for the tail state distribution with the

exception being that the slopes are different ok. So, how does one go about modelling

this? A good way to approach this is by defining the density of states to be exponentially

dependent on the energy. So, we say that the density of states is some pre factor into the

exponential  of  E  minus  EC  divided  by  a  fitting  parameter  which  is  called  as  the

characteristic energy.

So, here EC k is nothing but the Boltzmanns coefficient and TC is a parameter which is

called as the characteristic temperature or one could also use the equivalent which is the

characteristic voltage which is k T C by q. So, this can also be called as the characteristic

voltage. Now using this fitting p arameter TC one could define a characteristic energy

that fits this definition that fits the experimental data using this kind of a model. Now this

is a general expression and therefore, you could have one characteristic temperature for

the deep states and one characteristic temperature for the tail state. So, one could say that

the density of states. So, this is a very general expression. So, this is not is only to define

there approached modelling.



One could say that the density the acceptor like density acceptor like deep states have a

relation which is says some god which is some pre factor that needs to be estimated from

the experimental data into the exponential of E minus EC by a characteristic temperature

for the deep states. And the acceptor like tail states is given by say g AT naught into

exponential of E minus EC by k Tt which is the characteristic temperature for the tail

states.

And similarly one could a define the donor like deep states and the donor like tail states

based on the experimental data found. So, the donor like states are not shown in this

picture here. So, this is the first step towards any modelling which is to define the density

of  states  and we can define  this  using an exponential  definition  and with something

called as the a fitting parameter called as the characteristic temperature.

(Refer Slide Time: 06:04)

So, the next step is to calculate the total number of localized carriers. So, what do you

mean by localized carriers? These are carriers which are trapped and are sitting in the

gap states. And how do we define the carrier concentration of localized carriers? It is

simply all carriers that set from the fermi level to the conduction band edge. So, here

again we are looking at only the carrier sitting in the acceptor like states. So, from EF O

to EC. And that is nothing but the product of the fermi function. So, here you can see the

fermi function into the density of states we had defined a density of states which is got a

characteristic temperature and exponential dependence on energy. So, that is the density



of states into the fermi function and this integral is performed the respected d from fermi

level  to  the  conduction  band  edge.  So,  which  implies  that  we  are  integrating  and

calculating all  the carriers that are present in this region here,  which are our trapped

carriers in the acceptor like states.

(Refer Slide Time: 07:11)

Now this integral can the mathematics here is quite involved, but do not focus on the

mathematics depending on the what you say the characteristic temperature.

So, here I should define this  particular parameter alpha.  So, this particular  parameter

alpha  is  nothing  but  the  ratio  of  the  characteristic  temperature  to  the  ambient

temperature. And depending on what alpha is or what the value of alpha is, this integral

can be the answer to this integral can be different. Now it is so, happens that in this

particular case for this particular example, if the alpha is greater than one which means if

the  characteristic  temperature  is  greater  than  your  ambient  temperature,  which  so,

happens in the case of deep states, then the number of localized carriers in the deep states

turns out to be this particular answer here.



(Refer Slide Time: 08:18)

And on the other hand if the alpha is less than 1 which so, which happens to be the case

in the case of tail states. 

So, the characteristic temperature for the tail states is less than the ambient temperature

and therefore, this integral the same integral turns out to be a very different gives you a

very different answer which looks like this.

(Refer Slide Time: 08:35)

So, as I mentioned in the mathematics is a bit involved, but I am trying to keep the focus

on the approach. So now, we can have a complete definition of the carrier concentrations.



So,  here  are  the  localized  carriers.  So,  there  are  2  kinds  of  carriers  and  disordered

materials.

You have trapped carriers or localized carriers.  So, these are nothing but the trapped

carriers which are trapped in the states in the gap. And you have the free carriers which

are sitting in the extended states. So, these are the carrier sitting in the extended states.

So, these are the ones that can that can provide that posses a large mobility and which

can contribute to the current.

So, the number of free carriers per unit volume is given by an expression that you are all

very familiar with, which is the density of effective density of states into E to the power

EC minus EF minusEC minus Ef by kT. So, this is this expression is very similar from

the k compared to the case of crystalline silica. But this is something new which does not

exist in the case of crystalline silicon which is the number of carriers that are trapped per

unit volume is given by the total number of trapped carriers in the tail states plus the total

number of trapped carriers in the deep states. 

And those answers are given here for this particular example. So, here is a nice picture.

So, here is the charge per unit volume versus energy. So, you can see that the free carrier

concentration goes like this. And the trapped carrier concentration is shown here right

this  is  all  due to the deep states and that  is  all  due to the tail  states.  So,  it  is  quite

important to note that at thermal equilibrium it could so, happen that the trapped carrier

concentration is much larger than the free carrier concentration.
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So, having given that introduction to disordered semiconductors let us now look at thin

film transistors. And we will see we will look at the techniques used to model thin film

transistors,  which  are  basically  the  field  effect  transistors  using  disordered

semiconductors and using a thin film process flow. So, asI mentioned before the thin film

transistor  has  got  thin  film  metallic  gate,  a  thin  film  insulator,  a  thin  film  of

semiconductor and your source and drain contacts which are tailored such that you have

good carrier injection and therefore, low contact resistance. 

Now a key point to note is if you are building transistors out of many organic inorganic

materials or many organic materials the density of states largely determines the kind of

thin film transistor. Again what I mean by that is regards to whether that transistors n

type p type or whether the process allows a complimentary mos device and that is got to

do with the density of states picture. And we will have a look at the working of the thin

film transistor to understand this.



(Refer Slide Time: 12:06)

Now how does a thin film transistor work? Now as we so, what we have to look at here

is the density of states picture. So, let us say we have a we have applied a gate voltage

we built a thin film transistor and we start throwing in positive charge on the gate.

Now in the case of crystalline silicon, what was the consequence of us putting positive

charge on the gate? In the case of crystalline silicon, if we looked at the, the band gap

was very free and the Fermi level was free to move about or in other words the band

bending was very, very free. So, in crystalline silicon we had a device structure wherein

we had a doped semiconductor. And we had a insulator and the gate and the consequence

of us adding positive charge was firstly, be achieved flat band and then if you use aP-

type silicon body, we saw that the we first achieved depletion. Here we had our intrinsic

fermi level  bend towards the fermi level  or in  other words the conduction band and

valence band began to bend towards the fermi level; we first achieved a depletion where

in all the positive charge here was compensated by the negatively charged ions acceptor

like ions in the bulk.

And then by adding more  and more  positive  charge,  we could  achieve  a  significant

amount  of band bending; the band bending became very significant  and the intrinsic

fermi level bent below the fermi level near the interface. And therefore, the moment Ef

became greater than Efi Ei we found that electrons began to appear at the interface and

we had a  region of  operation called  as  the inversion region of  operation.  And these



electrons where the ones that enabled carrier transport between source and drain so, that

was the working of the crystalline silicon semiconductor.

Now in the case of disordered semiconductor the fermi level is not free to move. There is

band bending, but it strongly depends upon the density of states. Now as we add positive

charge in the gate of a non crystalline semiconductor MOSFET or in other words the thin

film transistor is that, the fermi level tries to start moving towards the conduction band

edge ok. In other words if you think off the band bending picture the conduction band

attempts to bend towards the fermi level.

But since there are so, many states sitting in the band gap, the movement of the fermi

level  towards  the  conduction  band implies  that  these states  must  now be filled  with

electrons before the fermi level can make progress and move towards the conduction

band edge. Or in other words all the positive charge that we are on the gate is being

compensated by the trapped charge that is appearing in the gap states as the fermi level

makes it is move towards the conduction band edge. 

So, let us say this is the let us say that figure 1 is the position where your Vgs is equal to

flat band. So, all bands are flat at this point.Now as we add more and more positive

charge on the gate, we find that the fermi level starts moving towards the conduction

band edge or in other words the conduction band tries to start bending towards the fermi

level, but since the fermi level is now climbed up by this distance as compared to it is flat

band point all these states are now filled with carriers there all filled with electrons and

that occupancy depends upon the product of the fermi function and the density of states.

Now it is these electrons that are going to compensate for the positively positive charge

that we have applied on the gate. In the case of crystalline silicon we found that it was

the  band  bending.  And  it  was  the  exposed  dopant  ions  that  was  contributing  or

compensating for the positive charge on the gate, but here it is the trapped charge or

these electrons that are occupying acceptor like states that are going to contribute to the

charge balance. So now, the meaning of acceptor like states becomes very clear right.

So, as the fermi level moves up these states were filled with electrons. And therefore,

they all  became negatively charged. So, they are playing the same role as the doped

acceptor like ions in the case of an n channel MOSFET. So, as the fermi level moves up

the acceptor  like states get filled with electrons  and this  charge compensates  for the



charge on the gate. So, as more and more positive charge is applied on the gate, the fermi

level starts heading closer and closer to the conduction band edge.

And at some point there will be enough free carriers sitting in the conduction band edge

above the conduction band edge in the extended states to permit significant current. And

this  point  is  defined  as  your  threshold  voltage  ok.  So,  look  at  the  clear  difference

between the operation of a MOSFET and that of a TFT.

(Refer Slide Time: 17:52)

So, let us spend some time looking at this difference in the case of crystalline MOSFETs

what defined are threshold voltage what was the threshold voltage in.

The case of crystalline silicon MOSFETs, we had a gate and we had an insulator and

when we do the  band bending diagram then since  the band gap was very  clean  the

conduction band could move to move towards the fermi level very freely. So, at first we

had to achieve flat band. That was the first milestone and then. So, that was the let us say

that  is  the  intrinsic  fermi  level  and that  was  the  fermi  level  with  the  p  type  doped

semiconductor. 

So, first we achieved flat band, but then as we started adding more and more positive

charge, the fermi level moved closer to the conduction band or in other words there was

some band bending. There was some band bending. And all the positive charge in the

gate was compensated for by the depletion charge in the semiconductor. So, the next



milestone toward achieving flat threshold voltage what is that we need to deplete the

semiconductor  enough  in  order  to  get  the  bands  in  order  to  get  the  bands  to  bend

significantly. And finally, we had to achieve inversion. And how was the inversion point

defined? It was that point at which the band bending was. 

So, significant that the electron concentration of the interface managed to match the hole

concentration in the bulk. So, we said that this was equal to phi F and therefore, the

surface potential had to be 2 phi F in order to achieve threshold voltage. So, this had to

become 2 phi F and this point we said that there is a enough inversion charge that we

considered to be the and we considered the MOSFET to be working above threshold

voltage.  So, that  was our definition  of threshold voltage.  What  about crystalline  non

crystalline semiconductor a amorphous semiconductors? In this case there is no, there is

nothing like a depletion layer.

The semiconductor is intrinsic there is nothing like a depletion layer. There is nothing

like achieving these 2 phi F. So, all this there is no there is no inversion point where in

the surface potential  achieves to phi F. So, these definitions do not exist in a similar

manner as in the case of crystalline semiconductors. Instead what we have is we have a

conduction band we have states inside the band gap. And let us say this is the fermi level

at flat bands. So, yes you do have flat band. So, we have the first milestone to crosses the

flat band, but threshold voltage is defined as that voltage, wherein the fermi level gets

close enough to the conduction band edge. 

So, that all the states above the conduction band edge the extended states are populated

with some amount of free carriers that in enable a measurable level of conduction. So,

that is the definition of threshold voltages which is a very vague definition. Because it

depends upon your density of states profile. So, the density of state distribution is very

large. You need to trap a lot more carriers before the fermi level can climb till that point. 

And therefore, your threshold voltage is going to be much larger ok and therefore, the

threshold voltage the proper definition of threshold voltage. So, let us say that this is the

location of the fermi level when the carriers and there is significant carrier population in

the extended states. So, the definition of threshold voltage is that, the fermi level needs

to, needs to climb up and passed.



These gaps or passed all these states which implies that all these states first need to be

filled with electrons and therefore, all this negative charge will balanced all the positive

charge applied on the gate. And therefore, the definition of threshold voltage is the flat

band voltage plus this total trapped charge in all the states divided by COx. So, how

much of charge do we need to trap in all these states so, as to get the fermi level close

enough to the conduction band edge.

So,  as  to  get  enough carriers  in  the  extend with  states.  So,  that  is  the  definition  of

threshold voltage. And this depends upon the density of states picture. So, we can see

how the density  of states  is  controlling the operation of the MOSFET. Now there is

another point, let us look at the mobility of carriers. So, in the conduction band states ok,

let us look at the transients; let us look at the transients. Now as the fermi level moves

through the states. 

We have something called as a sub threshold operation. So, here was the flat here was the

flat band voltage. So, there was the flat band voltage and between this point to that point

we have sub threshold operation. So, in sub threshold mode of operation the fermi level

sits mostly in the deep states. It is only when you are close to threshold voltages of the

fermi level as climbed far enough that has gone into that it has gone into tail states. So, in

sub threshold operation the fermi level sits in the deep states.

But then as the fermi level makes it is climbed the speed at which it is make it makes it is

climb towards the conduction band depends upon the density of states here. So, let us say

that that there are a large number of states to be filled. The fermi level will climb very,

very slowly. Because it needs to fill all these states with the electrons before it can move

upward. But then if there are very few states to be filled then the fermi level can climb a

little faster.

So, depending. So, let us say that the fermi level let us say that the density of states looks

like this. The fermi level is climbing through very slowly because there are large number

of states. And then it increases it is speed and then it goes up very, very quickly through

this region because there are very few states. And then it becomes slow again because

there are a large number of states again. 

So, this implies that the threshold slope or the sub threshold swing would reflect this

behaviour you will find that the current is growing very, very slowly because the fermi



level is moving very slowly through the gap states and then in this region as the fermi

level begins to move quickly you will find that the current also increases a rapidly. And

once the fermi level enters these states you will find the current increases slowly and

then  the  MOSFET get  enters  above  threshold  operation.  So,  in  some sense  the  sub

threshold slope and the sub threshold swing are all dependent on the nature of the density

of the deep states. So, that is the second difference. 

So, therefore, in the case of crystalline silicon, we found that the sub threshold slope if

you look at the sub threshold slope it depended on something called as 1 plus C depletion

by COx. And because we had interfacial trapped charge, you have see interfacial. But

here one can define the sub threshold slope as 1 plus C C interfacial plus C gap states by

COx. The third point the third point to note the third point to note has go to do with the

mobility of carriers. So, why did we say that why did we say that the amorphous silicon

semiconductor  has more n type behaviour as compared to p type behaviour. And the

answer to that also lies in the density of states (Refer Time: 25:57).

 So, let us say we have 2 options we have the fermi level sitting here at flat band and we

would by applying positive voltage like to move the fermi level closer to the conduction

band edge, as compared to moving the and by applying negative voltage we would like

to move the fermi level closer to the valence band edge. Now let us see which of these is

more feasible. 

Now it so, happens in amorphous silicon, that the density of states in the valence band or

that valence band or the donor like tail states has got a much larger density as compared

to the acceptor like tail states. So, you can see that this slope here is very, very sharp.

Whereas, this slope here is very, very large. Now because this asymmetry you have a

very different different is got a very direct consequence on the practicality of having hole

type transport or electron like transport.

So, in order to create holes, in order to allow holes to transport, be the transport be the

carriers of current transport, we need the fermi level to move towards the valence band

edge. But this because of the large density of states this can happen only at very, very

large negative voltages. On the other hand it is much easier to get the fermi level closer

to the conduction band edge because of the smaller density of states and the tail states.



So, the presence of gap states determines. Firstly, the threshold voltage secondly, the sub

threshold slope and thirdly the type of transport is at n type or a p type transport. And this

is the significant difference between disordered semiconductor based MOSFET which

are called as thin film transistors and the crystalline semiconductor based MOSFETs.

(Refer Slide Time: 28:01)

So, let us now look at,  let  us use all  these information to try and see you know the

methods  is  to  develop analytical  models  for  thin  film transistors.  So,  again here  the

mathematics  might  be  very  involved,  but  the  focus  should  be  on  the  approach  as

compared to the details of the derivations. So, the first step is let us look at the MIS

electrostatics.  Which  is  equivalent  to  your  MOS capacitor  the  electrostatics  of  there

MOS structure. So, the first step is to write down Poissons equation. In the case of you

know your crystalline silicon MOSFETs.

We found that Poissons equation was enough you write it in terms of the electric field, it

was given by d by d axis q NA by epsilon s where NA was the acceptor ion concentration

in the P type bulk which we had used to develop our MOSFET. And in terms of the

potential, it was d square phi by dx square is q NA by epsilon s.

Now in the case of amorphous semiconductors, what determines the Poisson equation?

So, what determines the charge carriers. So, this charge carrier concentration is given by

the trapped charge. So, what constitutes all this charge carriers is the trapped charge, plus

the free charge. So, if you go back to this general picture of which you know we looked



at the movement of the fermi level through the gap states, we saw that all these trapped

charges were the ones that were responding to the applied electric field or the applied

gate voltage. And we also had some amount of free carriers depending upon the location

of the fermi level. So, any electrostatics with regards to the band bending or to identify

the  electric  fields  inside  the  semiconductor  must  consider  the  trapped  charge

concentration and this free carrier concentration.

So, therefore, we now have a Poissons equation which is got a free carrier concentration,

which is got a trapped carrier concentration. And this is the trapped carrier in the tail

states and the trapped carriers in the deep states. So, you have 3 terms, which is the free

carrier sitting above the conduction band edge, the trapped carriers in the tail states and

the trapped carriers in the deep states. Now each one of these terms depends upon the

potential that is applied. 

So, therefore, this is a Poissons equation which will also have the potential term on the

right  hand side.  And all  of you are familiar  as  to the  means to solve this  particular

equation. But the free carrier concentration will have an e to the power phi by phi th term

where this is the thermal voltage, the trapped carrier concentration in the tail states will

have an E to the power phi by phi t term, where this is the characteristic voltage of the

tail state trapped charge. And the deep trapped charge carrier concentration will have an

E to the power 5 by phi d term where phi d is the deep the deep state characteristic

voltage. 

So, using these 3 terms one can write out poissons equation and solve it in all it is detail,

but for the purpose of these slides what we have done here is we have merged all  3

exponentials  and  defined  an  effective  carrier  concentration.  And  an  effective

characteristic  voltage  and written  the  sum of  these  3 terms as  simply  this  particular

exponential ok. So, this need not be this is definitely not the most accurate approach, but

it is being done only for the purpose of this example here. So, what is this mean? It says

that if the trapped carrier concentration is the largest if say one of these 2 is the largest

than any o this term will d will contain of mostly trapped carriers. And this characteristic

voltage will tend towards one of these characteristic voltages.

On the other hand if this term here has got mostly free carriers then any o will tend

towards this particular concentration that the concentration of nf o. And this term here



will tend towards phi th. So, that is the implication of having this exponential. Now all

that is left for us to solve this particular exponential.

(Refer Slide Time: 33:02)

And here is the details of all the solution. So, we have this Poissons equation to be solved

and there are there are 2 boundary conditions. The first boundary condition says that at.

So, when you have band bending in the semiconductor the point at which phi is 0 that is

when  we  achieve  flat  band,  we  have  defined  phi  the  reference  potential  as  on  the

potential in the bulk. So, when phi is 0 you have a 0 electric field. That is when the bands

become flat the electric field is 0. The second boundary condition has got to do with the

interface.

And what we say there is that the electric displacement which is the permittivity into the

electric  field at  x equal  to 0 is  given by Ci into Vgs minus V fb minus the surface

potential. So, that is the second boundary condition. So, by applying these 2 boundary

conditions and going through all this mathematics, we will find that this is the expression

for the electric field and you know going through all this mathematics by applying both

the  boundary  conditions  we  find  that  the  surface  potential  is  defined  in  terms  of  a

Lambert W function.
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 Which can be approximated as this particular expression here. And the surface potential

therefore, is and the potential through the semiconductor not the surface potential, the

potential through the semiconductor is given by this particular expression. The surface

potential in particular is the potential at x equal to 0.

(Refer Slide Time: 34:37)

Now, the next step towards modelling is now, we have the potential function and we

have  this  surface  potential.  Now  the  surface  potential  determines  the  free  carrier

concentration per unit volume. Because of free carrier concentration per unit volume is



defined by this particular expression here which is your nfo into e to the power phi if e to

the power phi by phi th, but the surface potential defines the free carrier concentration

per unit volume near the surface. But however, for the definition of your current densities

it is useful to define the free carrier concentration per unit area.

And the way this is done is by integrating nf in thickness and you integrate it from 0

through the thickness of the semiconductor. So, the point is thin film transistors are made

up of thin film semiconductors. And this thin and what we are saying here is that nf is the

free  carrier  concentration  through the  entire  thickness  of  the  semiconductor. And by

performing this integral we identify the free carrier concentration per unit area.

(Refer Slide Time: 35:56)

So, that that integral is solved out here in full detail. And we find that the free carrier

concentration per unit area is given by this particular expression here. And you see 2

parameters that did not appear in the case of crystalline silicon MOSFETs. In the case of

crystalline silicon MOSFETs the free carrier concentration per unit area was simply Cox

Cox into Vgs minus VT minus Vc. But here you have 2 other parameters you have an

exponent which is called alpha minus 1 and you have a pre factor which is called as

gamma.

So,  what  are  alpha  and  gamma?  Alpha  is  your  twice  your  effective  is  2  times  the

effective voltage divided by your phi th. In other words your alpha is nothing but the



term that we defined earlier which is your twice your characteristic temperature divided

by the ambient temperature.

And in the case of crystalline semiconductor materials, this characteristic temperature

was the same as the ambient temperature. Or in other words phi e was known to be the

same as phi th. And therefore, alpha was the same as 2. And therefore, this term here

became 2 minus 1 which was 1. So, therefore, crystalline silicon MOSFETs did not have

any factor there. But this is the more general version of the semiconductor and you find

that alpha is twice TC by T.

So, that is your parameter alpha. That depends upon the characteristic temperature of the

gap states. And what is gamma? Gamma is defined by this particular term. The key point

here is that gamma defines the number of carriers in the free states divided by the total

effective number of carriers.

Which in some sense includes the carriers in the trap states plus the carriers in the free

states.  Therefore,  gamma  as  an  indicator  of  this  ratio  of  the  free  state  carrier

concentration by the total carrier concentration. And using this particular relation, which

is number of the number of carriers per unit area in order to define your current voltage

characteristics we find that the current voltage characteristics is given by this expression

which can then be integrated to define the current voltage characteristics of your TFT.

(Refer Slide Time: 38:39)



Ok.  So,  in  the  case  of  MOSFETs alpha  was  simply  2  and  we  ended  up  with  this

particular relation, but even in the case of TFTs if these particular assumptions are made

then you will find that there character is that current voltage characteristics of a TFT is

quite similar to the current voltage characteristics of a MOSFET. So, in some sense this

is  a  summary of  how one goes  about  with regards  to  deriving  there  current  voltage

characteristics of a TFT. Now as we saw this term threshold voltage in the TFT is given

by the total trapped charge concentration by Cox plus the flat band voltage.

(Refer Slide Time: 39:29)

And this plot here shows that typical transfer and output characteristics for a TFT. Now

since the threshold voltage  is  nothing but the trap charge by Cox plus Vfb this  is  a

trapped charge per unit area divided by Cox plus Vfb the threshold voltage ends up being

a very dynamic quantity.



(Refer Slide Time: 40:00)

And  once  C  is  a  very  unique  phenomena  in  disordered  semiconductors  which  is

something called as the threshold voltage shift. So, what is this mean? So, in the case of

crystalline silicon MOSFETs the threshold voltage was more or less a fixed quantity. I

mean we once you know the threshold voltage at the MOSFET you used it for modelling

your circuit behavior. But in the case of disordered semiconductors when a MOS when

the thin film transistor is an operation. 

So, let us say you apply a certain gate to source voltage and you apply a certain drain to

source voltage.  Then when this  thin film transistor  is  an operation you find that  the

threshold voltage in a thin film transistor becomes a function of time. In other words as

the MOSFET current as the MOSFET is driving current, the current in the MOSFET

begins to decrease in time. Why does this happen? So, this is a very key phenomena

which is very peculiar to disordered semiconductors.

Now there are 2 mechanisms which result in threshold voltage shift. The first mechanism

can be said to be both these mechanisms are related to charge trapping, but the first

mechanism is charged trapping in the dielectric and in interfacial states. So, although it is

not  written  here,  you  can  say  it  is  dielectric  and  interfacial  states,  that  is  at  the

semiconductor insulator interface. So, these 2 are the first parameters of mechanisms that

contribute to charged trapping.



There is another mechanism which is which contributes to charged trapping and that is

related to something called as defect state creation. So, what is defect state creation? So,

we saw that there was a certain density of states in the semiconductor. So, that was the

energy and this was that density of states. Now its so happens that as the MOSFET is in

operation. So, you have your fermi level here, the MOSFET is an operation or the TFT is

an operation. 

So what happens is that due to the disorder in the semiconductor and due to electrons

interacting with these weak and dangling bonds, stronger defects are created. In other

words new states are created deep inside the band gap ok. So, the presence of these new

states results in all the free electrons now getting trapped in these states or in other words

it appears like as though the fermi level is slipping down in energies even though we

have a large gate voltage. 

And this movement of the fermi level down in energy simply because of the creation of

defect states results in it appearing like as though the threshold voltage of the transistors

increasing with time. So, it is a very dynamic phenomena and one finds the threshold

voltage the transistor increases with time and is given by a relation that looks like this. 

Ok something called as a stretched exponential function and that experiments show this

which is if you apply a certain gate voltage and if the there is a that the gate voltage is

larger the rapidity with which the speed at which the threshold voltage increases will also

be larger. So, this is a phenomena that is quite unique to disordered semiconductors and

it is of quite some importance.


