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So, now in order to make the definitions of these wave functions psi of A and psi of B

much more specific, we need to identify these four coefficients. What are A of A; B of A;

A of B; and B of B? So, the moment we identify these four coefficients, we can clearly

identify psi of A and psi of B. And how do we identify these four coefficients? We need

four boundary conditions. So, what are these boundary conditions? 
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So, you might be familiar with two of these boundary conditions. The first boundary

condition is that of the continuity of the wave function. So, since if you look at point x

equal to 0, at x equal to 0, the wave function psi of A, the amplitude of the wave function

psi of A, at x equal to 0; must have the same values the amplitude of the wave function

psi of B, at x equal to 0. So, these two amplitudes should be the same. And, therefore psi

B at x equal to 0 must be equal to psi of A at x equal to 0, so that is the first boundary

condition.

The second boundary condition is that not only is the wave function continuous, but the

derivatives of the wave functions, but all also be continuous ok. So, therefore d psi of A

by d x, and d psi of B by d x at x equal to 0, must have the same value ok, so that is the

second boundary condition. Now, the next two boundary conditions may not be may not

be very familiar ok. And the arise from something called as Bloch’s theorem, and which

is applied when you have a periodic arrangement  or a periodic potential  profile.  So,

when you have an infinitely periodic potential profile, they can use something called as

Bloch’s theorem. 

And what does Bloch’s theorem? Now, since these two regions that is A and A here ok,

are essentially twins nature does not make any that is not distinguish between, where

these  coordinates  occur.  In  other  words,  see  this  choice  of  the  origin  is  completely

arbitrary, we chose this we define this origin to be here. And, we therefore defined psi of



A to exist here, and psi of B to exist here. But if he just translate this entire potential

profile by one period, which is by one lattice constant. This potential well would exist

here. And therefore that potential well would then start having this wave function psi of

A ok. 

So,  therefore  the  wave  function  in  this  potential  well  must  be  related  to  the  wave

function in this potential well. And the wave function here is psi of A. And this relation is

brought out by Bloch’s theorem. So, what Bloch’s theorem tells us is let us take the wave

function the value of the wave function at this point at x equal to a naught. So, let us look

at this point x equal to a naught. Now, this edge and this edge are twins. And therefore

the values of the wave function at this point, and the value of the wave function of this

box, at this point must have the same amplitude. 

So, let us let say to make this clear. Let us call this as psi A, and let us call that as say

some psi A naught. So, what Bloch’s theorem tells us is that psi of A at x equal to a

naught that is at this location is related to the value of the wave function, psi A naught at

x  equal  to  minus  b naught  at  this  location,  at  this  right  side  boundary  by a  certain

multiplication factor ok. And that multiplication factor is e to the power i k a; where a is

your lattice constant; and k is a coefficient that represents the wave, and wave vector ok. 

Now, it is not necessary for us to define this new wave function psi A naught, because the

value of psi A naught at x equal to minus b naught is exactly the same as the value of psi

of B at x equal to minus b naught, because of the continuity of the wave functions in this

edge. And therefore, we can replace psi A naught at x equal to minus b naught; by psi B

at x equal to minus b naught.

And,  therefore  the  Bloch’s  theorem  says  it  provides  the  relation  between  the  wave

function here; and the wave function here. And it says that psi A at a naught is equal to

psi B at minus b naught into e to the power i k a naught plus b naught, which is the

lattice constant. And this relation also holds true for the derivatives, d psi A by d x at x

equal to a naught is equal to d psi B by d x at x equal to minus b naught into e to the

power i k a. And, now using these 4 boundary conditions, we can we can now solve for

psi A and psi B and obtain a wave function that is much more accurate. And then we can

go ahead and start calculating energies. And all the other attributes of the wave particle

that exists in this periodic potential well. 
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Now, upon solving these linear equations,  and after calculating these coefficients,  we

will end up with the relation of this sort ok. I have not shown you the details here, but we

will end up with the relation of this particular form. So, you have a large term here, and

this term comprises of terms like alpha; beta; a naught; and b naught. Now, alpha and

beta are both functions of energy.

So, if you go back here, we see that alpha is a function of energy, and beta as a function

of  energy. So,  alpha  and beta  are  functions  of  energy;  a  naught  is  the  width of  the

potential well; b naught is the width of the potential barrier. And, therefore this entire

term in brackets is a pure function of energy, which is denoted by this function F naught

of E. So, we will define a function F naught of E, which is basically this expression here

and it is a, it  is a function of energy. And, now that function has to be equal to this

particular term here, so we have F naught of E being equal to cosine k a, which is a

naught plus b naught, where k is the wave vector. So, we have this particular relation. 

So, we first so what does this tell, so let us first sketch F naught of E versus energy. So,

we have here a plot of F naught of E versus energy E. And that curve would look like

there is a red curve here ok, to trace this particular path. But then the nature imposes a

limit on F naught of E, and what is that limit, it says that F naught of E must be equal to

this cosine of k a naught plus b naught. And, therefore since a cosine function cannot be



greater than 1 or less than minus 1. F naught of E is also bound by these limits, it cannot

be greater than 1 or less than minus 1, so this is the limit imposed by nature.

So, nature says that the electrons  in this linear arrangement of atoms must obey this

condition that F naught of E must be less than 1 less than or equal to 1, and must be

greater than or equal to minus 1. And, therefore this purely mathematical function is now

bound by these 2 bounds ok, so it says here is the bound by the bound of 1, and here is

minus 1. And, therefore nature allows the electrons to only exist take up values of F not

of E, which are these values, which are inside these bounds.

And all  these places,  where F naught of E exceeds 1 or goes below minus 1 are all

forbidden ok. So, the electrons cannot take up values of F naught of E of this kind. Or in

other words; if you look at the energy axis the electrons are forbidden, from taking these

particular energies, because, these particular energies permit F naught of E to go above

or below plus 1 or minus 1 respectively. So, these energies are all forbidden. And the

electrons are only allowed to take these energies, where F naught of E stays within these

bounds  ok.  So,  we  see  that  from  a  very  simple  mathematical  relation,  we  see  the

enforcement  of the discretization or the presence of energy gaps occurring in a, in a

linear arrangement of atoms. 
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So, if we were to now plot E versus k ok, so we saw that F of E is equal to cosine k a

naught plus b naught, and a naught plus b naught is equal to a. And if you were to plot



this plot of E versus K, we would end up with a plot looking like this ok. So, here these

little blue curves are all a very finely spaced energies, it’s almost continuous energies ok.

And the electrons are only allowed to occupy these energies. And these little S shaped

stitches, if I may use the term are the energy levels the electron is allowed to occupy. So,

then electron is allowed to occupy these energy levels, the electron is allowed to occupy

these energy levels and so on.

But,  at  these  boundaries  when k takes  a  value  of  an integer  times  pi  by  the  lattice

constant, at those boundaries, you find that there is a sudden jump in energy, there is a

discontinuity. So, the electron can take all these values, but then beyond this it has to

jump into the next set.  So, you see these discontinuities that keep occurring at  these

points, and this is the presence of an energy gap or the location of an energy gap, now

and these are the forbidden energies. 
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So, if you want to imagine this better, let us also plot energy versus F naught of E, the

plot of energy versus F naught of E. So, let us plot let us plot it sideways F naught of E

versus energy. So, we are looking at the same plot that we discussed here, but we just

plotting it sideways. And let us just draw little dotted lines corresponding to these jumps

and energy. And here once again let us place our bounds of plus 1 and minus 1. So, we

find that the places, where these jumps occur are the exact same spots, where F naught of

E crossed these bounds etcetera.



So, we found that F naught E, F naught of E was taking all sorts of values, and nature

permitted F naught of E to only exist in within these bounds imposed by minus 1 n 1.

And it is at these energy points or these energy levels that F naught is E crossed these

bounds.  And,  therefore  nature does not  permit  the electrons  to take  up those energy

levels.  And, therefore you see these gaps occurring at these points in K, which is an

integer times pi by a, so that is the first aspect that comes out from this discussion. 

The second detail is that if you look at one of these blue curves ok, they appear to be

very continuous, because, I have drawn it in a very continuous manner. But, in fact they

are composed of very tiny points or tiny energy values that the electrons could take up

ok. And what are these tiny values, these tiny values are the discreteness that came about,

because of the larger box the electrons were occupying.
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So, let us go back to our discussion here. So, we saw that the electrons were seeing two

potential  wells.  So,  the  electrons  that  were  still  held  by  the  atom were  seeing  this

potential well given by a Kronig Penny model, but the electrons that had escaped the

clutches of the atom, and that were free to roam about in the crystal, were seeing the

potential well imposed by these bounds of the crystal. 

So, it is as though you have so let us let us just draw it a little cleaner. So, this was a

Kronig’s penny model. If it  take all  this  and transfer in to your rectangular  potential

profiles, it is as though, you have this to be your potential profile. So, this is the length of



the entire 1 d crystal, and these are your little potential wells because of the different

atoms. And, therefore the electrons here, experience this potential well, and the electrons

there are sitting in a much wider box. And what happens, when the boxes the length of

the box increases,  we saw the distance or the def  the difference between the energy

levels, drops down significantly, and that is exactly what this is indicative off. 

Therefore, if you think of the difference in k ok, so the difference in k here is the order of

pi by a ok, so that is your delta K, for the electrons sitting in the inside in the clutch of

the atoms. But, if you look at these finely spaced k points, so what does the order of this

K, it is the order of pi by L, where L is the size of your crystal or the size of this periodic

arrangement. So, if you were to take a crystal, where L is about 1 centimetre, so which is

about 1 e minus 2 meters, then 1 by L or pi by L ok, so the delta k because of these points

is of the order of a 100 ok. So, you can imagine that the distance between these two is

about say 100.

And what is the distance between these two points? It is the order of pi by a and a is

basically a lattice spacing in the crystal, which is say let us say 5 angstroms, so, the order

of 1 e minus 10 meters. And therefore, pi by a so the order of 1 e 10 ok, so meter inverse.

And, therefore while this is all 100, we are talking about 1 e 10 here, so that is what the

order of 1 e 10. So, therefore these points are about 1 e 8 times more closely spaced as

compared to these jumps here. And, therefore it appears like as though it is a continuous

distribution of or continuous line or continuous bunch of states that the electrons could

occupy. So, this is the second point to denote. 
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The third point denote is that you will see that these E k stitches that, we defined have

got a little gentle S shaped nature, they are all looking like little S ok. In other words

more mathematically this lower end here could be described by a parabola, which is of

the form alpha k square, where alpha is greater than 0. So, of course there could be a

constant here, and there could be constant there, but let us not worry about that I am just

describing the general nature. 

And this nature this region here the top of this S is another parabola, which is the order

of  say minus  beta  k square,  where  beta  is  greater  than 0,  and therefore  you have  a

negative sign outside. And the reason for these this kind of a relation will become very

apparent, when we go further down, and discuss the concept of something called as the

effective mass of an electron in a crystal. 
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Now, moving to the very last the other two points or the not the last, but there are two

other aspects that we need to discuss. So, moving on, we find that these are the states the

electrons  could occupy, and there  are  these  little  discontinuous jumps.  But,  then  the

general envelope or the general trend of this plot is in itself a parabola ok.

And do we expect that? The answer is yes, because if you were to head towards classical

mechanics, you will find that your energy is nothing but your P square by 2 m and P,

which is the momentum is h bar k and h bar k square h bar k whole square by 2 m

provides  a parabolic  relation  between E and k.  And, therefore you will  find that  the

envelope is a parabola. So, as we head towards classical mechanics, these discrete the

discreteness of all this would disappear and we would effectively have an E k relation

that looks like this envelope shown here. 
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Now, let us continue this discussion. Now, the E k diagram that is shown here by these

blue curves; to draw this E k diagram, we arbitrarily defined the origin, we said k equal

to 0 is at this point. But, that need not be the case, nature does not distinguish between

say this point in K, and that point in K. And, therefore if you were to draw the same E k

diagram here, it we could draw another, we could draw a similar kind of a picture, but

just translated along the k axis. So, for example, this is the E k diagram that, we just

studied ok, so that is the picture that we studied.

So, you can see you can see that the origin was chosen here, but we might as well draw

an E k diagram here, which is again got the same kind of an energy profile ok. So, you

can see the little stitches just translated by this period. And once again, you could also

draw an E k diagram here and so on, and you could fill up the entire k space by drawing

such E k diagrams.  And when we do that  you can see this  general  bands of energy

beginning to appear.
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So, let us do that completely, and you will find that, you have these little bands of energy

ok. So, if you were to, if you were to take this apart here, and draw this as a band, you

will find that there is an energy band here, which the electrons are allowed to occupy.

And this these energy bands are now composed of very finely spaced energy levels ok.

And, we already saw that the spacing here is all of the order of you know it depends on

this 1 by L.

So, they are very finely spaced energy levels.  And then you have a gap, you have a

discreet gap, because nature does not allow the electrons to take up those energies. And

then  you  have  another  band,  you  have  another  band  that  is  formed,  which  is  also

composed of discrete energy levels and so on. So, therefore this Kronig Penny model

shows us the formation of energy bands in a more mathematical or quantitative sense.

And, we got here by simply solving Schrodinger’s equation for our simplified model,

where in we simplified the potential profile to the rectangular potential profile. 
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So,  just  to  summarize  everything  we  have  looked  at,  I  think  this  picture  is  quite

important ok. So, all our discussion so far has told us that, when we bring arranged atoms

closer and form, start forming, constructing, solids, wherein the atoms begin to feel each

other, then we find that the electrons are permitted to occupy bands of energy. So, you

have these different bands that are composed of finely spaced energy levels, and these

bands are themselves separated by large forbidden energy gaps ok.

So, as we move up, so what we have here is the energy axis as the y-axis. So, as we

move down in these energies, we encounter electrons that are occupying these different

energy levels, and that are more tightly held by the nucleus of the atom. And as we move

up an energies, we encounter the electrons present in the outer shells, and those electrons

are less tightly held by the nucleus.

Now, of interest to us in this course are two kinds of energy bands ok. Of course, all

energy bands are important I mean without that, you would not have an atom. But, as far

as this course is concerned, we are interested in 2 kinds of energy balance, and those

energy bands are described by these 2 Blogs that I have shown here. So, there would be a

point in this energy profile that, you will have an energy band, which has got energy

levels,  which are big and these energy levels are basically solutions to Schrodinger’s

equation.  And, you will  find that  this  band of energy is  mostly filled with electrons.

When you say a band is mostly filled it implies that electrons are occupying these energy



levels  or  these  electrons  have  taken  up  solute  those  solutions  prescribed,  where

Schrodinger’s equation that corresponds to these energy states. 

(Refer Slide Time: 24:52)

So, these energy levels are mostly filled with electrons. And just above that band would

be a forbidden gap; and further above that band, you will encounter, another band of

finally spaced energy levels, but which is mostly empty, which is mostly empty, which

implies that there are solutions that the electron could take up. But, there has been no

electron or very few electrons that have actually taken up those solutions, and are having

an energy level as defined by the energy levels in this band ok.

So, you have this mostly filled band, and you have this mostly empty band. And this

mostly filled band, typically corresponds to the outermost shell of the electron outermost

shell of the atom,. And therefore this is something called as the valence band. And these

energy levels ok, correspond to the larger potential well, which we saw in our Kronig’s

penny model. And these energy levels are something called as the conduction band, and

they are mostly empty. So, it requires the electron sitting in a valence band, which still

held by the nucleus by the clutch of the atom, but is very weakly held by the nucleus ok.

So, you consider  an electron there,  which corresponds to the electron in  the valence

band.  The moment this  electron would receive some energy, it  would climb up, and

across this energy gap; and it would enter something called as this conduction band. And

it enters the conduction band, it  essentially sits in a much larger potential  well.  And,



therefore in this much larger potential  well,  the electron is free to move about in the

crystal.

And therefore, the electrons in the conduction band are free to move about in the crystal.

And  therefore  the  word  conduction,  which  means  the  electrons  now  being  charged

carriers are free to move about, and they become carriers or they become entities, and

lead to charge transport, and therefore currents in a crystal. And this red line here is our

fermi level. Now the fermi level could lie anywhere, but just for the sake of definition,

just for the sake of connecting you at the previous picture I have located this fermi level.

And we will define the fermi level much more carefully further down the road. 
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So, now we are in a good, we are in good shape to describe the difference between

metals, insulators, and semiconductors. So, we are slowly heading and making our way

from the general study of solids towards understanding three kinds of solids that are of

great use for us. And these classifications are based on the conductivity of the solid as to

how much, how easily they can conduct electric current ok, and they are called as metals,

insulators, and semiconductors. 

Now, metals in the case of metals the conduction band that is the mostly empty states

overlaps with the valence band, which is the mostly filled states. So, essentially what the

electron sees is a continuous distribution of energy levels. There is no energy gap or in

other words the energy gap is 0 ok, so there is no energy gap. And, therefore these states



are mostly filled,  but  it  requires  the electron  to  just  acquire  a  very small  amount  of

energy before it enters the conduction band, and begins to move about in the crystal.

So, it is only at 0 kelvin that it is quite like it is that it is it is possible that, we find no

electrons in the conduction band. But, with any once the temperature starts increasing

above  0  kelvin,  and  particularly  at  temperatures,  which  are  close  to  the  room

temperature, which is say about 300 kelvin. It is very, very easy for the electron to enter

these higher energy levels,  and occupy states  in the conduction band. And, therefore

these electrons ok, as shown here this is the picture of metal, as seen from the point of

view the lattice.

So, these are the different atoms that form this periodic arrangement in the metal. And

these are the electrons in the metal. And these electrons are free to move about, because

they  can  easily  escape  the  clutch  of  the  atom  and  enter  the  conduction  band.  And

therefore, the metal can be said to have a sea of free electrons. And there and therefore

these free electrons would respond quite actively, and in large numbers to any applied

voltage  difference.  And therefore  the metal  would have extremely  good conductivity

because of these free electrons. 
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So,  now let  us  head towards the other  end of  the spectrum,  which is  basically  your

insulators, so these are insulators. Now, what is an insulator? In case of an insulator, you

have the valence band states, and you have the conduction band states. And these two



bands are separated by a very large band gap ok. The forbidden gap is very, very large.

And for the sake of a quick estimate, we have defined the energy gap to be greater than 2

electron volt. But, this does not mean that nature is imposed a strict limit of 2 electron

volts.  Nature does not classify these materials  say for example a semiconductor, and

insulator by noticing as to whether the energy gap is greater or less than 2 electron volts.

In other words, nature is not sitting there saying that ok, this material has got an energy

gap with 2.1 electron volts. So, let me call this as an insulator. 
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Whereas, this material has got an energy gap of 1.9 electron volts, so therefore let me

classified as a semiconductor, no, that is not the case. Now, the purpose of these numbers

ok, so you can see that it is quite a vague the difference between an insulator, and a

semiconductor  is  quite  vague.  Both of them have an energy gap,  both of them have

conduction band, and valence bands described like this. The only difference is the values

that we have assigned.

And what I am telling you is that these are not strict values. For example, you could

have, you could have a semiconductor having an energy gap, which is slightly greater

than 2 electron volts, in fact these are called as wide band gap semiconductors. So, what

tells a what provides this classification of as to what is a semiconductor, and what is an

insulator ok. Now, the answer has got to do with that conductivity at room temperature

ok.
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And let me explain that a little clearer; let me explain that a little more clearly. So, let us

take  an insulator. In the case of an insulator, you have some electrons  sitting in  the

valence band. Now, at room temperature, which is 300 Kelvin, these electrons would

acquire some amount of energy, and they would now jump to the conduction band. Now,

in the case of an insulator, this gap is so large that at 300 Kelvin, it is very unlikely that

the electrons would get a get the energy required to jump across the gap.

And, therefore at 300 Kelvin while it is possible for us to find a few electrons this count

statistically speaking is not very large. So, one way to look at the electron concentration

in the conduction band, which is the number of electrons sitting in the conduction band

per unit volume of the material. If one were to look at this particular estimate, we will

find that this number is quite low. And, therefore the conductivity or the current carrying

capacity of these carriers in the in this material that we call as an insulator is very low,

and  the  measurable  current  is  extremely  low,  and  therefore  we  classify  this  as  an

insulator.

But, in the case of a semiconductor, the band gap is much smaller; there does exist a

band gap, but it is much smaller. And, therefore the electron sitting at 300 kelvin has a

good possibility  of acquiring the thermal energy and getting excited to head into the

conduction band. And at room temperature it is possible that, we find a large enough

number of electrons in the conduction band that, we can now have a measurable estimate



of the conductivity or the current. So, it is this aspect that defines and distinguishes a

semiconductor from an insulator. 

And, therefore in a semiconductor, we will see that the electrons do participate in all your

bonding. So, for example here we have shown something, which is equivalent to silicon

lattice. And you do have electrons participating in bonding, so these are your valence

electrons that are being shared, and that are participating in bonding. But, upon receiving

some amount of energy say thermal energy, it is possible for the electron to escape the

clutch of this atom clutch of the nuclei, and enter into the crystal, and begin to conduct

through the crystal. And this electron, which escapes from this clutch leaves behind a

vacancy ok and that we vacancy is something called as a hole.


