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So, we have seen in the Schottky Contact  we have looked at  the basic  pan bending

diagram  you  have  looked  at  the  electrostatics,  we  have  derived  the  current  voltage

characteristics  when  we  apply  a  certain  bias.  And  we  will  now  try  to  define  the

impedance, the small signal impedance the Schottky contact based on all our studies.
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So, the small signal impedance basically has got 2 terms. So, you can think of so, we are

all talking about low frequency aspects here.

So, in forward bias the Schottky contact behaves like a diode. And, you know, it can be

imagined  to  have  a  small  signal  impedance.  So,  just  like  we measured  small  signal

capacitance, you know, we are interested in the small signal parameters; which means

you have your metal semiconductor contact,  you have got these 2 terminals. And we

have applied a small signal voltage V a. And in order to measure the capacitance, small

signal  we wanted  to  measure  the  fluctuations  in  the  charge  with  due  to  the  applied

voltage. And in order to measure there is something called as a small signal resistance

ok, we measure the fluctuations in the current with respect to the applied voltage.

So, therefore, this these 2 terms give you the small signal impedance parameters for the

diode. So, the capacitance per unit area small signal is dQ d by dV a which we have

already derived and found to be that. And since the current voltage characteristics due to

diffusion and thermionic emission, you know, could be a written as sum J naught e to the

power q V a by kT minus 1, dJ by dV a is the per unit area conductance. And that is

given by J naught q by kT e to the power q V a by kT. And if it is in forward bias, this

term would dominate and therefore, in forward bias this would be dJ by d V a; which

implies a dV a by dJ, that is the which is basically the resistance term is approximately



kT by q that is the thermal voltage divided by J naught into e to the power q V a by kT

which is approximately your J.

So, therefore, we just say it is of this order. It is a diode essentially, it is a diode and we

are  looking  at  the  small  signal  resistance  of  the  diode.  So,  this  is  the  small  signal

resistance. And of course, there are many, there are lot more details to this, this is got we

look  to  the  diffusion  current,  we  looked  at  the  thermionic  current,  you  look  to  the

tunneling current and this does not take into account the tunneling current. But based on

the diffusion and thermionic currents, this J naught can be this factor J naught can be

defined slightly differently.

So, that is with that we conclude our discussions on the Schottky contact. We say that,

the  Schottky  contact  is  a  metal  semiconductor  contact  which  has  a  diode  like  or

rectifying  nature,  simply  because  of  this  kind  of  a  relation.  I  mean now proceed  to

discussing the ohmic contact.  Now ohmic contact is, you know, the impedance of an

ideal ohmic contact is quite simple because it has to be just a resistance.

So, therefore, we will not spend time discussing the current voltage characteristics of an

ohmic contact; instead, we will look at the electrostatics of an ohmic contact. And you

know, look at the, you know, what the Poisson’s equation is and, you know, how you

solve it, how do you go about solving that.
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And this is something we have already it is it is familiar territory, because there is there

is there is nothing new here; is just that you need to be careful in looking at the ohmic

contact.

So, if you this is the band bending for an ohmic contact, right so, if you have an N type

semiconductor and you have a metal. And the metal N type semiconductor was such that

the work function the metal is now less than the work function of the semiconductor;

which means that you have q phi m there, and q phi s here. And you create this contact.

The  metal  will  donate  electrons  to  the  semiconductor,  and  the  bands  in  the

semiconductor will bend downward, you know, the conduction band will get closer to the

fermi level and the electron population here is greater than the electron population in the

bulk.

Where the electron population the bulk is about N D; my apologies from writing very

small. So, this is the electron population at the interface. So, that is going to be greater

than n bulk. So, clearly we cannot make the depletion approximation here, absolutely

not,  because  we  know  that  this  region  is  filled  with  a  lot  of  mobile  carriers.  And

therefore, this is a more accurate representation of our Poisson’s equation. So, you have

your rho is equal to minus q n, because n is the number of electrons per unit volume and

q is the negative charge in the electron and therefore, a Poisson’s equation takes this

form.

Now, n is definitely dependent on phi and how does it depend on phi we have already

gone  through  this  exercise  once  before,  when  we  try  to  write  down  the  Poisson’s

equations more correctly for the Schottky contact.  So, it  is a same exercise.  So, n is

nothing but N c into e to the power E c minus E f by kT and therefore, all I need to do is

identify what is this is E f that is E c and identify what E c minus E f is and that is that

that depends upon x in this region.

So, this is going to be my, let us define that as my phi. So, E c minus E f at any location

is the E c minus E f in the bulk minus phi right. So, if I if I call that as A B and C, C is

equal to A minus B ok. So, therefore, E c minus E f in the region where the band is

bending, I will call that as E c as a function of x. So, that is what I have written there, E c

minus E f in the region where the band is bending is E c minus E f in the bulk minus q

phi. So, that is q phi, and we use that expression and plug it in to your expression for n,



and say that q by epsilon N c e to the power, you know, all these terms is your Poisson’s

equation.

So, what we have done now is we have represented n in terms of phi. And this is nothing

but this expression here. So, what this is, is that. So, that is phi so, at this location at that

location phi is 0. So, if you think about it be now redefined our reference point so, that is

that  is  a  point  to  note,  there is  no barrier  height.  So,  it  is  a  new problem,  we have

redefined our reference point such that my potential is now 0 at in the bulk. So, that is

my 0 potential and that is my potential, it is a little different from what we did before.

But as I told you can choose an appropriate reference so, here I am choosing a different

reference point.

So, phi is 0 here and as we head towards the interface phi increases, and it is maximum

at the interface. So, that is the way I have defined my potential.  So, therefore, as we

approach the interface so, at phi equal to 0, this term is one and you can see that the

electron concentration is same as the bulk electron concentration. But as we approach the

interface phi increases, and the electron concentration increases; which is as expected in

the  case  of  an  ohmic  contact.  And  we  are  now familiar  with  the  tools  to  solve  an

expression of this kind a differential equation of this kind right. So, we multiply both

sides by d phi by dx and we will end up with a differential equation that we need to solve

and then obtain your electric field.

So, this is the there is an introduction to the ohmic contact and this is the electrostatic

this is how you approach electrostatics of this case. The current voltage characteristics is

clearly defined by, you know, just a resistance that is a good it is a good approximation to

define the current voltage characteristics of an ohmic contact.

And as and by definition ohmic contact can be represented by a small signal model of it

just being a resistor on the region of operation, all right. One thing which I would like to

define before we close this topic is; the concept of something called as a Debye length,

ok.  Now  when  you  have  an  electric  field  and  you  have  say  carriers  or  some  kind

screening this electric field off.

So, based on the electric field that you have applied, the charges respond to the electric

field leading to a charge distribution inside. And essentially the point is after a certain

length this  electric  field needs  to be screened off,  the electric  field beyond a certain



length is 0. Now in order to measure this, in order to get an estimate on the screening

distance,  we  have  a  parameter  called  as  the  Debye  length.  It  is  an  estimate  of  the

screening distance; it is not the complete screening distance. It is an estimate ok, and that

length is given by this particular term ok, and you can see that most of the parameters are

constant except for the charges available.

So, in this particular case, if n if the interface electron concentration is n interface, that is

the electron concentration, it is these carriers that are going to be available for screening,

and if I increase this carrier concentration I can reduce the screening length. So, which

means that if I have a large carrier concentration, the electric field will be screened off

much sooner, there will be no electric field seen beyond a certain point.

But  if  I  reduce  this  carrier  concentration,  then  I  need  to  penetrate  the  electric  field

penetrates deeper into the material  and the screening will happen after a much larger

distance.  So,  it  is  a  measure  of  the  screening  length  of  a  electric  field  and  that  is

something called as a Debye length,. With this we will close our discussions on the metal

semiconductor junctions, and from this point on we will look at another junction that is

quite popular which is something called as the P-N junction.


