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So, now let us continue on and look at the Schottky Contact. So, we saw that there are

four there are two kinds of contacts that are formed in metal semiconductor junctions.

The first is the Schottky contact, which is you know which we call the rectifying contact,

but we really did not say why it is rectifying. And the second is the Ohmic contact. And

what we will do now is first take the Schottky contact as our object of study ok. And we

will  always  consider  the  Schottky  and  ohmic  contacts  for  the  n-type  n-

typesemiconductor.

And what we would like to do is firstly, study the electrostatics ok. So, we will study the

electrostatics of the junction. And then look at the current voltage characteristics, we will

then take the material out of equilibrium and study the current voltage characteristics.

And from these two you will effectively try to develop a small signal impedance model

for the device ok.

So, this is the first of the semiconductor devices and by going through this analysis we

will be in a position to then repeat this analysis for other devices. So, in order to; so just



to revise you know just to look at the Schottky contact again, you have a metal and you

have a n-type semiconductor so, this is your n-type semiconductor.

(Refer Slide Time: 01:44)

And  we  already  saw  that  the  Fermi  levels  will  align,  the  semiconductor  will  give

electrons to the metal because your phi m is greater than phi s and this is an n-type

semiconductor. So, the electrons will move into the metal, and the conduction band will

bend away from the Fermi levels, and this will be the band bending diagram.

So, what we are trying to find out here is we are trying to solve out for the exact nature

of the variation of this bending. You know how does the energy bands with in space? You

know what are the electric fields in this region? What is the potential in this region?

What is the charge in this region etcetera, etcetera? So, that is the objective of our study

and that is what we mean by the study of electrostatics.

So, if you think of this region, we already discussed that you know the electrons are not

encouraged to exist here, because you know this region has given up some electrons to

the metal plus. And it has resulted in the bands bending in this particular manner which

encourages electrons to roll downhill and stay away and keep away from this region.

So, if you want to think about it in terms of looking at E c minus E f which is basically

that difference. Then E c minus E f here is very large and therefore, the electron count

which is n is equal to N c e to the power minus E c minus E f by K T is very small. And



therefore, the electron population in this region very close to the junction is quite small

ok.

So since, this E c minus E f is greater than the E c minus E f in the bulk, the electron

population here is much smaller than the electron population in the bulk. So, you should

remember  that  the  population  scales  exponentially  with  the  energies.  So,  small

differences in energies lead to large differences in carrier concentrations. And K T is not

a very large number. So, I mean it is K T by q is of the order of 25 milli volts and K T is

there for about 25 milli electron volts. So, it is not a very large number.

So, this region has got very few holes, because in a holes of the minority carriers in the

n-type semiconductor. And it is gone now got very few electrons.
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And therefore, we said that this region is depleted of all mobile charges ok. But what are

the charges  present  here.  We discussed that  it  is  all  the fixed ions  due to the donor

doping. The donor dopants have all ionized and then they are all have their fixed positive

charge that is sitting in here ok.

So, this is the condition and we want to look at the electrostatics of this problem. So,

when  we  introduced  the  concept  of  junctions  we  said  that  in  order  to  study  the

electrostatics.  We will  need  to  solve  the  differential  form of  Gauss’s  law, which  is



something called as the Poisson’s equation ok. And that is exactly what we are going to

do here.

We are going to  solve the Poisson’s equation which have sort  of rewritten  out here.

Which says that and this is a 1 dimensional Poisson equation which says that the d E by

d x, where E is the electric field ok. So, I am calling E, but it is actually the Greek

alphabet psi.

So, d E by d x is equal to rho by epsilon, where rho is the charge concentration per unit

volume ok. In the space in the region of the semiconductor in which, we are trying to

analyze electrostatics so that is the charge concentration per unit volume. Epsilon s is the

permittivity of the material which in our case is the n-type semiconductor that we are

looking at and for silicon and for silicon the relative permittivity is of the order of 11.

Now, in the depletion region we are going to make very some might say drastic, but let

us say it is an approximation which is something called as a full depletion approximation

ok. So, the depletion approximation basically says that the charge concentration here. So,

what are the charges present in the depletion region in this region? You have the fixed

donor ions you have the positive charge.

So, you have plus q into N d per unit volume so, these are all the ionized donor dopants.

Then you have minus q n where n is the electron concentration and plus q p ok. So, that

is the complete count of all the carriers or all the charges present in the in this region the

depletion region. And if we have counter doped this material if you have added both N D

and N A and kept N D to be greater than N A. We will also account for the ionized

acceptors by writing minus q N A.

But here let us just keep it simple let us say there is no counter doping it is just these

three components ok. You do have holes, you do have electrons and you do have donar

dopants,  but  the  electron  count  you see,  the  electron  count  at  the  interface  is  much

smaller than the electron count in the bulks.
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So, if we had defined this region her which is very far from the junction as a bulk and the

electron concentration of the bulk is approximately your N D which is the ionized donor

dopants. And therefore, your interface electron count is much less than N D and that is

why we said this region is depleted. And P in n-type semiconductor is again very very

small so, this is also small.

And therefore, we say that in the full depletion approximation we say that n and p are so

small  that they can be neglected ok. And therefore,  the charge concentration per unit

volume  is  simply  q  N  D.  And  therefore,  we  replace  the  rho  which  is  a  charge

concentration per unit volume with q N D.

And we rewrite our Poisson’s equation as d E by d x is equal to q N D by epsilon s. Now

you know now this is a very simple experiment this is simple differential equation to

solve and your electric field turns out to be varying linearly with distance. So, that is

what  it  tells  us  what  is  the  solution  of  Poisson’s  equation  under  the  full  depletion

approximation says that the electric field varies linearly with distance and there is an

integration constant here ok.

Now, how do we determine that constant ok? We say that see what does electric field?

The electric field is there because there is a bending, you see this bending is also the

potential right. So, we are also we already defined we already said that your energies are

essentially the q times the potential ok.



So, q times the potential  is  equivalent  to your energies.  So, the band bending in the

energy band, the energy band bending ok, I am sorry he band bending of these energy

levels is equivalent to the existence of a potential that varies with distance ok.

(Refer Slide Time: 10:10)

So,  the  potential  is  varying  with  distance  so,  the  potential  is  a  function  of  x.  And

therefore, there is an electric field so, whenever you see a bent band it means that there is

an electric field in that region. So, very far from the junction, you know there is once you

cross this point there is no more band bending ok.

(Refer Slide Time: 10:32)



So, you have you had band bending to a certain extent and then the band slowly flattened

out and then it is completely flat. And beyond this region it looks like the semiconductor

does not know about the existence of a junction at all ok. And everything here was the

depletion region. Now, we define this width, as the width of the depletion region and

give it a symbol x subscript d, the d stands for the depletion width. And beyond this point

there is no band bending. So, any electric  fields that exist  in the material  due to the

formation of this junction it is all existing between x equal to 0 and x equal to x d ok.

And therefore, the electric field from this point onward so, the electric field from this

point onward is 0 all right. So, that is the boundary condition that we are going to use.

So, we are going to say that at x equal to x d, the electric field is 0 and of course, the

electric field is 0 even for x greater than x d.

Now, applying that boundary condition and using it.  We can calculate this integration

constant and we find that the electric field, the expression for the electric field is given

by this term here ok. So, the electric field is q N D by epsilon into x minus x d. So, let

look at this picture a little bit more carefully ok, so, let us look at this map ok.

So, this I have drawn these two dotted lines to sort of mark out all the events in the

depletion region. So, that is my x equal to 0 that is my x equal to x d and I have shown

the x axis here ok. So, that line there is x equal to x 0 and that is x equal to x d. So, that is

the width of the depletion region which is x d. Now all the band bending happens within

this region and beyond this the bands are all flat and this was my depletion region.

So,  what  are  the  charges?  According  to  the  full  depletion  approximation  the  charge

concentration in the depletion region is simply q times N D it is constant, because the

doping is  constant through the entire  semiconductor. If  the doping was varying with

space then this would vary, but right now it is a constant. And we are not considering

electrons and holes. And therefore, which is basically the full depletion approximation

and therefore, that is not included into this picture.

So, you have all the positive charges here and these positive charges are balanced by

negative charges in the metal which forms a very fine sheet.  So, this picture is very

exaggerated. So, this sheet is going to be very very thin ok, it is going to be a screen of

electrons that balance out all the fields. And beyond this region there is no field in the

metal  and  beyond  this  region  the  bands  are  all  flat,  and  there  is  no  field  in  the



semiconductor. So, that is the situation and we have calculated out the electric field to

vary as q N D by epsilon s into x minus x d.
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So, if you have to plot this electric field so, in the semiconductor, so again it is this plot is

there only in the semiconductor. So, we are looking at only the semiconductor at x equal

to 0. So, if you were to take this expression here at x equal to 0, the electric field is q N D

by epsilon s x d with a negative sign.

So, that is the electric field at x equal to 0 and at x equal to x d the electric field is 0,

which was our boundary condition. And between these two points electric field varies

linearly  with x.  So,  now how do we calculate  the potential  so,  what  is  the potential

variation? The potential variation is essentially it is a measure of the band bending.
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So, if you can find the variation of the potential in the semiconductor with x you have

essentially found the nature of the variation of the conduction band bending with x, the

nature of the variation  of the valence band bending with x etcetera.  So,  how do we

calculate the potential variation? Now the electric field is nothing, but minus d phi by d x

ok.

(Refer Slide Time: 15:34)

So, where phi is the potential and it is important so all though I am not shown it here, it

is important to know how we have defined the potential. So, this is the band bending



right.  So,  let  us  look  at  this  as  the  distance  x  that  is  the  energies  and  that  is  my

conduction band so, we just look at the conduction band.

Now, we have to keep a reference for potentials. Potential at any arbitrary point does not

make any sense it is with respect to a certain reference. So, we need to have a reference

potential and then measure the different locations in x. So, phi x 1 phi x 2 etcetera is all

measured with respect to that reference. So, we will set that reference at this point we

will say that at x equal to 0, my potential is 0. So, that is my ground ok, if you want to

think of it that way that is my measurement ground.

And,  as  we go  into  the  semiconductor,  this  gap  starts  increasing  and  therefore,  my

potential starts increasing so that is my potential variation. So, that is the way we are

going to define this phi and the electric field is minus d phi by d x. Now it need not be I

mean you are free to choose any reference you like ok.
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So, for example, an equally valid reference is you know choosing the potential in the

bulk as a reference. So, if this is the band bending and say that is x equal to x d. We

could say that that is the reference potential that is phi equal to 0; no problem. As long as

you apply the correct boundary conditions it is absolutely no problem as to what you take

as your reference potential.



But now for this analysis, I have to choose one of these two and I have chosen this as my

choice of reference. So, at x equal to 0 my phi is 0 and I want to know what is phi of x

because, if I know what is phi of x I know the band bending; I know what is E of E c of x

because, E c of x is going to scale or it is going to be proportional to q times phi of x plus

some offsets. So, since the electric field is minus d phi by d x so minus d phi by d x is

equal to this term here, which was the electric field which we obtained from solving

Poisson’s equation.
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And therefore, we solve this is the second differential equation and we find that phi of x

varies as the square of the distance ok. So, it is a quadratic variation with distance plus an

integration constant. Now, this integration constant really does not matter because we are

going to measure phi of x with reference to some other location. But then we could use

that  reference  point  to  identify  that  constant  and  we  say  that  we  have  chosen  our

reference to be x equal to 0 is where phi is equal to 0.

So, if we had chosen the reference are to be different if we had chosen the reference to be

phi equal to 0 at x equal to x d. Then we will have a different integration constant, but

now since we have chosen this as our reference.
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We find that the potential that is phi at x d ok. So, this is my potential variation in space

ok. So, that is my phi of x and x keeps increasing and at this point we have your phi of x

d. And beyond this the potential remains the same.

So, phi of x d minus this point that is phi that is the potential at this location minus this

reference potential is given by this term here ok. And this has got a special meaning it is

something called as the built in potential of your device and we will denote this with a

special symbol phi b i. So, b i stands for the built-in potential, because from the edge of

this junction till this point.

So, from this point till this location here we have a potential difference of phi b i ok. And

phi b i is very nicely connected to x d and x d you know you can inverse this relation to

obtain x d in terms of phi b i as the square root of 2 epsilon s phi bi by q N D. So, that is

your depletion width. So, if you know the built in potential you can calculate a depletion

width and on the other hand if you know you the depletion width you can calculate your

built in potential.

So, that is the straightforward I mean that is the simplest analysis that one could do to

determine the electrostatics of the Schottky contact ok. So, it started off with the full

depletion approximation and we find that we get a reasonably good answer to what they

are depletion width is and how it depends upon phi b i. Now all this is happening at

thermal equilibrium, we have not applied any voltages. We have created the junction left



the device in the dark and we find that this is the electrostatics. So now let us say we

decide not to make the full depletion approximation ok.
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So, we are not happy with the full depletion approximation we want to solve things a bit

more accurately how do we solve it ok? So, let me just introduce it and I will introduce

the tools and the techniques do it and this is something that will be helpful even in the

future ok.

So, let us again come back to this you know a nice drawing here, I do not have to use my

marker on this slide because it is all shown very neatly. And we have got a lot of labels

on this drawing so, this is the band bending. So, that is your constant Fermi level, so that

is  a  Schottky  contact  and  you  have  your  barrier  here  ok.  So,  the  Schottky  barrier

formation and then that is your conduction band the conduction band bends and then

flattens out after some x equal to x d.

So, that is the picture we are looking at so let us just mark that point x equal to x d or

somewhere there and everything in the middle here is the depletion region. So, what are

all these definitions so that is the barrier height which is given by q phi B ok, that is the

potential that we had defined so that is our reference potential so, phi is 0 at x equal to 0.

This is my x coordinate ok. So, that is x d that is x equal to 0 my phi is 0 at x equal to 0

and this is the potential that is varying with space because of the bending.



So, that is q phi of x which we had identified to be a quadratic term under the assumption

of the full depletion approximation. And this term here is the built in potential. So, this is

your q of phi at x d which is your q times the built in potential, which we found you

know to various x d square. Now since E c is varying with E f, in this region this gap

here that is between the conduction band and the Fermi level is essentially E c minus E f.

However, to be more accurate you can say E c as a function of x minus E f.

So, that E c minus E f term varies so at this location what is the E c minus E f it is equal

to q phi B. And at this location what is the E c minus E f it is equal to whatever it is in

the  bulk.  So,  we  define  q  phi  B  and  the  bulk  E  c  minus  E  f  so,  this  is  what  the

semiconductor  hand before  the  creation  of  the  junction  ok.  So,  we give  it  a  special

symbol because everything in this region is the bulk region and this is all, the depletion

region.

So, the E c minus E f in the bulk is given is clearly identified by defining the subscript

bulk that and the E c minus E f here is varying with in space ok. So, once this picture is

clear it helps with the lot of the analysis.

So, now let us say we want to do a more accurate study. So, we will say the Poisson’s

equation now I have written it directly in terms of the potential.
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So, the way this comes about is let us say d E by d x is equal to rho by epsilon s where

rho is the charge concentration. Now clearly, since E is equal to minus d phi by d x you

have d square phi by d x square is equal to minus rho by epsilon s. So, you need to have

a minus sign in place that.

(Refer Slide Time: 25:29)

So, in the full depletion approximation we had said that despite the charges being q N D

minus q n plus q p in the full depletion approximation we had said that these two are

negligible terms and we had we had gone ahead with just that ok. But now we want to do

something a little bit more accurate so, we will say that ok.
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We will say that you know getting rid of n and p is not really necessary because we really

do not know the numbers particularly as you approach the bulk ok. So, over here it might

be a great assumption to make, but as you start approaching the bulk it seems that it is

quite logical to expect that the n the number of electrons keeps increasing. And therefore,

if you are trying to perform an analysis in this region it is definitely not very advisable to

get rid of the end ok.
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So, what we are going to do? Is we are going to perform the study in a region of the

depletion in the depletion region, but closer to the bulk as compared to the interface ok.

So, we need a more accurate Poisson’s equation and we say that although we could retain

p we say that p is negligible, but there is no need because we have no information. 

 And in fact, it actually makes the mathematics a bit more symmetrical if you keep the p,

but just for the sake of an example I have not retained the p. So, we say that the p is still

negligible, because an n-type semi conductor. And in the depletion region as I approach

the bulk I have this to be my charge carriers.

So, that is my Poisson’s equation. So, you have a negative sign because of the potential

you are using a potential term, but then you have q N D minus these are the positive

donor ions minus the electrons in the bulk. So now, how do we go about solving this so,

we need to identify. So, this is a constant it is not a problem.
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But this is not a constant; it depends upon the potential because it depends upon E c

minus E f ok. So, let us identify n bit more clearly. And I will just get rid of these marks

here so, that slide is more clear. So, what is n? N is the effective density of states in the

conduction band into e to the power minus E c minus E f by k T.
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And we know that in the depletion region E c minus E f is a function of x ok. So, what is

I need to represent E c minus E f as a function of the potential. I want to get everything

in terms of the potential because the left hand side has got a potential term. I want to sow

I want to be able to construct a differential equation that I can solve ok. So, I do know, I

can see that it is connected to the potential, but let me sort of make it very very clear.

So, what is E c minus E f, E c minus E f is nothing, but q times the barrier height minus

the potential so think about it. So, this is E c minus e f and that is the barrier height and

that is the definition of the potential. So, this minus that so 1 minus 2 gives you 3 so that

is exactly what we have written here. And what is the barrier height itself, the barrier

height is connected to the bulk levels right the ball barrier height can be written as this

plus this so let us call it 3 and 4.

So, the barrier height so, 1 is equal to so repeated 3. So, that is 1 2 3 and let us call that 4

and 5 4 and 5. So, 1 is equal to 2 plus 3 I mean please do not take it as numbers. So,

maybe I should say A B and C do forgive me for D and E ok. So, A is equal to B plus C

and A is also equal to D plus E you could use either one of these definitions now they

just give you different table they give you a different picture. So, we could say that n is

equal to N c e to the power minus E c minus E f and we use this expression here and

write enhance this term here.

So, what we are saying is the n at the interface. So, the expression for n at any location in

the depletion region so, if you say this is the depletion region.
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And I want to get an expression for n at say some x. What we are saying is? It is the nth

the interface that is n at x equal to 0 times e to the power q phi by k T; which means as

phi increases n increases, which is expected because the interface has got very little n

and as phi keeps increasing n increases till it approaches the bulk concentration.

So, now I can use this expression or I could write another expression, I could say that I

could go one step further. I can say that I want to define the interface term more clearly.

So, I say that n is equal to N c e to the power q phi B by k T into e to the power q phi by

k T which is same as that. And then I can rewrite the barrier height phi B in terms of the

bulk E c minus E f and phi b i using this expression here.

So, then if you look at this term N c into e to the power E c minus E f bulk by k t what is

that? That is basically the electron count in the semiconductor before the creation of the

junction. So, that is what is going on in the bulk. So, that is the electron count in the bulk

which is approximately equal to your N D e ok. So, this is another expression for n, you

could use either of these expressions.

Now, what we have done is we have taken this variable n and expressed it in terms of phi

which is the potential and we have done that in order to solve this differential equation

ok. So, we are just going through this example because it is quite. Now I think it is quite

illustrative with regards to the techniques; we will use in future did it illustrate a lot of



these techniques. So, now you have your n in terms of phi, we will have n as a function

of phi and we make that substitution.
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So that is my Poisson’s equation so, that is the equation I want to solve to get a more

accurate answer ok. And how do we solve this? Now this looks like a tricky equation

right you have a d square phi by d x square term on the left hand side and you have got a

function of phi on the right hand side. Essentially you have got an equation which says d

square y by d x square is some function of y ok.

So, let us take a general x equation like this. So, here is one trick that you will find is

very useful in order to solve an equation of this kind. And simply what you do is you

simply multiply d y by d x on both sides ok. Now what is this term this is nothing, but

the derivative of d y by d x whole square with respect to d x, because if you were to

expand that you will first differentiate this term and then you will take the second order

derivative that is exactly the same as this so that is your left hand side.
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And your right hand side is simply d y by d x. So, you can get rid of these d x and now

you have a very nice differential equation to solve. If you were to integrate both sides

you will end up with d y by d x square being equal to the integral of f of y d y. So, that is

one that is a technique to solve and that is what we will be using. So, what we do here is

we multiply both sides by 2 d phi by d x. So, you have that term that essentially gives

you this term here and that is equal to d phi by d x square is nothing, but the square of

the electric field right.

So, we now have an expression which says d electric field square is equal to all this term

on the right hand side and you just integrate both sides, the left side will be the electric

field square and after you integrate the right hand side term, you will get some function

of phi and we now know the electric field to be the square root of that particular term.

So, this is very much solvable and in fact, we will go ahead and solve it in great detail

later on. Of course, from this point on particularly this topic onwards the course does get

a bit mathematical in nature. There is there is going to be there are going to be a lot of

concepts  to learn,  but  it  is  also important  to  learn how to calculate.  So,  we will  go

through  a  lot  of  derivations  it  might  appear  quite  painful  to  some  students,  but

nevertheless it is my duty to go through all these derivations ok. Because so, that you

have an understanding as to where everything came from.



But having said that in your exams and in your examples we will not be quizzing you on

how to derive a certain expressions so, that is not the point of the course. The point of

this course is to you know in a sort of communicate certain concepts and quiz you on the

concepts and yet show you methods and techniques to calculate and also show you how

these tools came about ok. So, that is so that is why we need to go through all these this

bit of mathematics, it is show you all the tools and the techniques and the methods to

perform calculations ok.

So, do bear with me if the mathematics gets a bit too dull. So, that is the electrostatics of

the Schottky contact we will not worry about the electrostatics anymore. And now we

will; what we will do is; we will try to take the Schottky contact out of equilibrium.
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And apply a bias voltage and start observing whether there are any currents. So, we are

all still working on the Schottky contact ok. So, it is still we look at the electrostatics and

now we are going to look at the current voltage characteristics ok.


