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Lecture - 02
Quantum Mechanics: Particle in a Box

All right. So, continuing on from you know where we left off in the previous lecture. We

will look at the Schrodinger’s equation in Quantum Mechanics. We basically introduced

it in the previous lecture,  but from this point on we will see how to actually use the

Schrodinger’s equation and what can tell us about the behaviour of the wave particle in

certain systems.

(Refer Slide Time: 00:37)

So, the first example or the application for our Schrodinger’s equation would be through

an example, which is quite popular and which is something called as a particle in a one

dimensional box, ok. And what we have here is the profile of the potential versus the

distance. 

Now, although we keep mentioning the word potential,  and I do keep using the term

potential, I would like to emphasize that this term in Schrodinger’s equation which is

minus h square by 2 m dou square psi by dou x square plus V psi is equal to E psi. This

term correspond to the potential energies we are equating energies, ok. So, we are saying

that this is the kinetic energy, this is the potential energy and that is the total energy, ok.



But  since  the  potential  is  has  an  is  the  equivalent  of  the  potential  energy, I  would

sometimes use the term potential I while talking about these concepts. 

So, in this case we now have a potential profile that looks like as shown, and the particle

or the wave function exists somewhere in this region from x equal to 0 to x equal to

infinite. But the potential profile is such that between this region of x equal to 0 to x

equal to L the potential has a value of 0. 

And in the regions outside x equal to L and below x equal to 0 the potential has a value

of infinite, which implies that the electron or the particle that we are considering has to

have an infinite amount of potential energy in order to be located in these regions, ok. It

has to have an infinite amount of energy to be located in the regions outside this little

valley and this valley is what we call as the box. And as per this definition this valley has

got a length or the size of the box is of length L that the coordinate system being placed x

equal to 0 at this boundary and x equal to L being located at this boundary of the box. 

Now, since all these potentials are infinitely large we say that the wave function it is

impossible for the particle to be present located in to be located in those regions and for

this example the particle remains very much confined to the box, ok. So, the magnitude

of the wave function, so since we are talking about the wave particle the magnitude of

the wave functions in these regions is 0 whereas, the magnitude of the wave function or

the made through the wave function inside the box is what is to be determined. 

(Refer Slide Time: 04:06)



So, we can now, write Schrodinger’s equation for this example of a particle in a box and

say that this is the kinetic energy that is the potential energy, and that is the total energy

and for the region that is inside the box the potential  energy is 0, ok. And therefore,

Schrodinger’s equation reduces to this simple form and outside the box as we mentioned

it is not possible for the particle to exist since it would require an infinite amount of

energy and we say that the wave function has got a amplitude of 0. 

Now, the general solution to an equation or second a differential equation of this kind is

given by defining the wave function as a summation of sines and cosines. So, we say that

the wave function is A sin k into x plus B cosine k into x, where A is nothing but a

constant coefficient and B is a constant coefficient and k is another coefficient that needs

to be determined, ok. So, from this point on they are going to apply the correct boundary

conditions to try and define the wave function of the wave particle inside the box more

accurately and in particular we need to identify the parameters A, B and k. Now, k can

also be seen can be seen to be related to the energy right from Schrodinger’s equation.

So, if we were to rewrite the differential equation as dou square y by dou x square is

equal to minus 2 m E by h bar square into psi, the value of k is related to the energy and

it is 2 m E by h bar square. But we would now, like to identify a further relation, of k

particularly with regards to the geometry of the box and then use that relation to identify

the nature of the energy. 
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Now, since this is a general solution let us apply the property that the wave function must

be  continuous,  ok.  So,  this  was  the  second  property  of  the  wave  function  that  we

discussed, ok. So, which implies that if I were to consider these two boundaries, which is

there is some wave function here, we do not know what the way we what the function is

but it must be continuous which means that if I were to go to this boundary, ok.

The value of the wave function just inside this edge must equal the value of the wave

function outside this edge, ok. And similarly if you go to the other side the value of the

wave function inside this edge must value must equal the value of the wave function

outside. And since we said that the wave function does not exist in this region, the wave

function is essentially 0, the probability of finding a particle outside this box is 0. So, that

is the statement we made and the argument also the box is infinitely high, ok. So, it is an

in surmount insurmountable cliff. So, you have the wave function being 0 on the outsides

and therefore, the wave function at x equal to 0 must be equal to 0 that is the continuity,

that is the continued continuous made through the wave function. 

So, we first apply this condition that psi at x equal to 0 is 0. So, psi at x equal to 0 is A

sin of k into x, which is 0 plus B cosine of k into x which is 0, ok. And this turns out to

be 0 plus B is equal to the wave function at x equal to 0. And since this value the wave

function takes a value 0 we need this to be the first condition which implies that my B is

0 therefore, my wave function is or the form A sin of k x. So, for any x since B is 0 the

cosine term does not exist. So, this is the wave function. So, you have identify we have

reduced the wave function from this very generic sine and cosine terms to just having A

sinusoid term.



(Refer Slide Time: 09:05)

So, now let us apply the boundary condition on the other side of the box, which is at x

equal to L. And at x equal to L again we find that the wave function must be equal to 0

since the particle cannot exist on or the wave particle cannot exist on the in the regions

where x is greater than L. 

Now, applying that boundary condition at x equal to L we say that this is the value or the

magnitude of the wave function is 0 in at sin k L. Now, what are the possible solutions?

They could have A to be equal to 0, but that would simply that would be a trivial solution

as it simply say that the wave function does not exist. So, we will ignore that solution

because we also have the possibility of a solution, where k can be an integer times pi by

L, where n could be positive integers 1, 2, 3 and so on. 

And n pi by L into L is a integer times pi and sine of an integer times pi is 0. Therefore,

this way function has now become more specific we can define the wave function more

clearly by applying the boundary condition at x equal to L and saying that the wave

function is A sin of n pi by L into x. Now, all that remains is to identify A using that

value of k.



(Refer Slide Time: 10:57)

So, we have now identified B to be equal to 0 we have identified k to have the form of n

pi by L, where n is an integer. So, the wave function has now reduced from this very

general expression of containing sines and cosines its, now reduced to this it has to be

other form of A sine n pi by L into x. Now, the only thing is left to be determined is A

and we do that by using the condition that the particle must exist somewhere, right.

So, if you remember psi square was the probability density function for the particle, and

psi square dx is the probability that the particle exists between x and x plus dx. 

So, therefore, the probability that the particle exists somewhere inside the box, we have

already said that it does not exist outside the box which implies that the particle must be

existing inside the box. So, the probability that the particle exists somewhere inside the

box,  is  basically  the  summation  that  the  summation  of  all  these  little  minuscule

probabilities, which is simply the integral simply stating that the integral from 0 to L of

all  these little probabilities is 1, ok. So, this is the probability that the particle exists

somewhere inside the box and that is guaranteed to be 1, according to this experiment. 

So,  this  is  the  next  condition  that  your  general  psi  must  satisfy. So,  what  does  this

become? So, it implies that from 0 to L, if I take A square sine square n pi by L of x then

this must be equal to 1. Now, we write you can write your sine square, ok. So, let us say

you have a general sine square alpha you must note that cosine of 2 alpha is cos square



alpha  minus  sine  square  alpha  or  in  other  words  its  1  minus  2  sine  square  alpha.

Therefore, my sine square of any angle alpha is one minus cosine of 2 alpha by 2, ok. 

So, we represent the sine square using this particular relation and what that gives you is

that this integral is nothing but A square 1 minus cosine of 2 n pi by L x the whole thing

divided by 2. And we need this to be equal to 1; we need this to be equal to 1, ok. 

Now, this integral is simply A square by 2 into x, ok. So, this is all with respect to dx

sorry I have missed that out, so here integrating with respect to x everywhere. So, this is

the first term is going to be A square into one by 2 dx which is A square x by 2 minus

you have A square by 2 into your 2 n pi by L into sine of 2 n pi by L into x, ok. And the

boundary  conditions  are  from  0  to  L.  So,  the  first  term  if  I  apply  these  boundary

conditions  it  is  this  integral  limits  sorry these (Refer  Time:  14:47)  not  the  boundary

condition sorry I mean the in the limits of integration are from 0 to L. 

So, if I apply these limits, what do you get? The first term, the first term becomes A

square by 2 into L and 0 just results in 0. And the second term when I throw in an L there

you should get minus A square by 2 into 2 n pi by L sin of 2 n pi I mean I throw in a 0

there I just get 0, so minus 0, ok. So, this entire term must be equal to 1. Now, you see

that since this is an even integer times pi this in is quite term will always be a 0, ok. So,

therefore, this term also vanishes. And you are only left with the fact that A square by 2

into L is 1 or a is equal to square root of 2 by L. So, this is the outcome of applying this

relation that the probability of the finding the particle somewhere inside the box is 1, ok. 
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So, we can therefore, describe the wave function, ok. So, now, you have identified A to

be square root of 2 by L you identified B to be 0 and you have identified k to be n pi by

L,  where  n  is  an  integer.  So,  k  could  take  multiple  values  and  they  are  all  integer

multiples of pi by L. So, therefore, my psi has now become square root of 2 by L sine of

n pi by L into x. So, this is my wave function. So, now, we have identified we set out on

this exercise try and identify A, B and k we have identified all 3 terms and we now have

our wave function.

So, what this says is that. Firstly, note that the wave function is got A sinusoid term and it

must it must always end on the boundaries it must always have a value of 0, ok. So, you

will end up with the wave function looking like this, where at x equal to L by 2 if you

take if you take the case of n equal to 1 firstly, you will have sine of pi by L into x and at

x equal to L by 2 the this value takes a value 1 which is the highest value. So, you will

find the, at n equal to 1 the wave function looks like this.

At n equal to 2 I have sine of 2 pi by L into x, and at x equal to 0 at x equal to L the value

is definitely 0, but it is also 0 at a at x equal to L by 2. So, if I if my n is equal to 2 so this

was the n equal to 1 case, if n is equal to 2 at x equal to L by 2 my wave function again

takes a value 0 the amplitude takes a value 0 because sine of 2 pi by L into L by 2 is

simply sine of pi which is again 0 but at x equal to L by 4 the amplitude is the highest,

ok. So, you find that the wave function at n equal to 2 takes a takes a shape of this kind



and you can continue drawing this you know for n equal 2, 3, 4, 5 etcetera. So, this is my

wave function all  right.  So,  that  is  the first  point  to  know that  the wave function is

sinusoidal inside this box. 

Now, let us now, try to calculate the energy of this wave function, and that is going to tell

you a lot of interesting things. How do we calculate energy? So, since my minus x my

Schrodinger’s equation is minus x square by 2 m dou square psi by dou x square is equal

to  E  psi,  all  right.  And  now, I  know my psi  accurately,  so  I  am going  to  use  this

expression in the left term here. 

So, the left hand side will now, become minus h square by 2 m, the first derivative of this

will yield square root of 2 by L into n pi by L of x into n pi by L into cosine of n pi by L

x, ok. So, if you look at what is d psi by dx it is square root of 2 by L, n pi by L cosine of

n pi by L x and my d square psi by dx square is going to be minus square root of 2 by L

into n pi by L whole square sine of n pi by L, ok. 

So, we are going to use that term back here which is there is going to be a minus sign

because the derivative of cosine is minus sign and that minus is going to cancel with this.

So, I will put a plus sign it before this term into square root of 2, 2 by L into n pi by L

squared sine of n pi by L into x. So, that is the left hand side and you will notice that this

term here which is square root 2 by L into this sine is nothing but your wave function psi,

ok. So, you might as well just write these two term, get rid of these two terms and just

use, just use psi here and this is equal to E psi, ok. 

Now, which means that my total  energy is given by this expression here, which is n

square pi square by L square h bar square by 2 m is my energy. For the when n takes a

value where n takes only integer values, ok. So, this is the energy for some particular n.

Now, the first thing which we notice here is that the energy cannot take any arbitrary

value since n can only be integers, ok. So, if my n is 1 my energy is pi square h square by

2 m L square. If n is 2 my energy is 4 pi square h bar square by 2 m L square and so on. 

So, the first thing to note is that the energy is quantized, you cannot have you cannot

have this particle having an energy of let us say something in between. So, it cannot have

nearly 1.5 pi square h bar square by 2 m L square because that violates the condition that

n has to be an integer, ok. So, that cannot happen, all right. So, the first thing to note is

that the energies are all quantized, ok. The second thing to note is that the energy is very



strongly dependent on the size of the box it varies as 1 by L square. So, if you were to

take a relation you know y is equal to 1 by L square and see how does y vary with L you

will see its quite dramatic as L approaches 0 y climbs up very very large and as L starts

increasing it completes completely comes down you know it reduces very very quickly,

ok. 

So, this depends on 1 by L square is quite dramatic. So, which means that if I have a box

that is very narrow then the energy, energy the particle is very very large and the moment

I start increasing the width of my box the energy the particle drops down, ok. So, let us

let us note down these facts very neatly do forgive my reuse of the slide again and again,

ok. 

So, the first point we noted was that energy is quantized, ok. The second is that a small

box implies large energy for the particle and a large box implies small energy for the

particle. So, the energy scales is 1 by L square. Now, let us also look at the mass if the

mass of the particle increases then my energy decreases, ok. So, these are all the absolute

values of the energy, ok. But if I have to draw all the different energy levels, like as it is

shown here. So, this is that n equal to 1 this was my wave function and n equal to 2 that

is my energy, at n equal to 3 there is another there is another energy level and so on so

forth, ok.

Now, if  I  were to  draw all  the energies  and measure the distance or the energy gap

between 2 subsequent levels, which is essentially which is essentially E n minus E n

minus 1, ok. Now, I am looking at the delta E n, which is the energy difference between

2 subsequent energy levels. Now, according to this it should be pi square h bar square by

2 m L square into n square minus n minus 1 squared, ok. And if you were to just look at

this expression it is nothing but 2 n plus 1 I am sorry 2 n minus 1, ok. So, the gaps

between these which is my delta E, scales as 2 n minus 1 into pi square h bar square by 2

m L square. 

So, the first thing to notice is as n increases the gaps between these two subsequent

energy levels also increase. So, here you have a smaller gap and there you have a larger

gap and n keeps increasing this gap will keep increasing. Now, the second thing to note

is that as L or m increase the gaps will reduce, ok. So, for a large box not only is their



total energy small the energy gaps between two subsequent energy levels is also small,

for a large box. 

And similarly the energy gap between two successful successive energy levels for a large

particle the large mass is also small. And that is why when you have large bodies with

large masses, ok, so even though they are composed of many particles if you avoid that if

you just set that aside you know let us say it is all coherent and let us say it is just like

behaves like one discrete large particle. 

The spacing between the energies are so small that this massive entity can take almost

any energy it likes, and therefore, you never get the feeling of something being quantized

in your day to day experiences. So, if you were to take a billiard ball or a tennis ball and

throw  it  you  find  that  depending  on  the  amount  of  energy  you  thrown  classical

mechanics tells you that it can always take any energy you like depending on how much

energy throw into it, and that is not true in fact. 

So, what this experiment is telling you is that if it is a discrete particle if you imagine

even this large mass to be one particle. As the mass increases it would appear it would

give you the illusion that the energies could be almost smooth and continuous, but in

reality it is not and the difference, it is always discrete and that difference between 2

energy levels is given by this particular term here which we looked at this particular

term, ok. And similarly the size of the box starts growing very large the energy levels

become very very fine, ok. 

So, let us so this is an important message as well. So, not only is not only the energy

pretty reduced the energy spacing going to reduce with the mass of the particle, but if I

were to increase the size of the box and you look at all these energy levels, you will find

that the energy levels are much more closer to each other here, ok because once again the

difference in 2 consecutive energy levels varies as 1 by L square. 

So, if we think about the electron. So, how does this connect with our semiconductor

physics? So, if you were to think about the electron, and let us say it sitting in some

material, and it sitting inside of potential well which cannot resemble this box and in

fact, there does exist such a potential well which is the nucleus of the atom. So, if you

think about the nuclei it is got let us say positive charge and therefore, it is got a certain



electrostatic potential and the only thing is its not shaped like a box, but the electron is in

some sense held inside this potential well. 

So, if you were to imagine all this as a box, and if you look at the amount the electron is

allowed to move about around this nuclear, and if you sort of imagine an effective length

or that effective size the box to be that then the energy levels electron can take, ok. So, in

a material in which the electron is more or less free it is much more finely spaced as

compared to an electron which is not so free, ok. 

(Refer Slide Time: 29:36)

Now, let us sort of extend this idea, which sort of generalize this idea to a 2D case, ok.

So, let us say the particle is not sitting inside a one dimensional box, but it is sitting

inside a two dimensional box. And it will still retain the fact that the, you see the particle

see is an infinite cliff, ok. So, you can sort of imagine a 2D box and for the time being I

will draw a rectangular box, for mathematical convenience as I will show you. 

So, let us imagine a rectangular box. So, it is a two dimensional drawing here it is a. So,

on the on the z axis you have potential, ok, so let us call that y and let us call this x. So,

initially  we  only  looked  at  that  as  a  1D case,  where  the  distance  was  only  in  one

direction, but now, you have a two dimensional distance plane, ok. So, this could be L x,

let  us call  the width the box next direction is L x and the width of the box in the y

direction as L y, ok. 



So, it goes from 0 to L y. So, I have to draw the coordinates this would be my coordinate

system. So, that is L x comma 0, and that is 0 comma L y and this is 0 comma 0. So, let

this be my coordinate system. So, I am only looking at the floor and if I were since it is A

since my potential is on the y axis the potential of this floor of this box is 0 and the

potential over here which is you know outside in the regions outside of this box, ok.

So, it is a hollow box and there is space all around it and that potential is infinitely tall,

ok. So, this is infinitely high, these are all  infinitely tall  walls and there is this little

hollow which is sitting at 0 potential and it is got a length x in the x direction L x in the x

direction and length L y in the y direction. So, that is the situation I probably should have

had a nice drawing here, but if you can if you can understand this drawing of mine you

have this situation in place. So, we want to solve Schrodinger’s equation for this case,

ok.

Now, since I chose a nice little rectangular box I can use one simple trick which is I can

say that my psi can be written as a product of two components, the psi in the x direction

and the psi in the y direction, ok. So, let us say my psi my wave function for the particle

can be written as a product of the wave function in the x direction and the product of the

wave  function  in  the  y  direction.  So,  if  I  were  use  this  relation  right  here  my

Schrodinger’s equation which now, has got 2 terms because you now, have to consider

the potential the momentum in the x direction and the momentum in the y direction. So,

it is got the x and y aspects to it and that is my total energy my potential is still 0, ok. So,

it is just Schrodinger’s equation, but written out in the 2D case and it is still the time

independent Schrodinger equation. 

Now, if I were to use this particular condition in my Schrodinger’s equation I will end up

with dou square psi x psi y by dou x square plus dou square psi x psi y by dou y square is

equal to E psi x psi y, ok. Now, psi x is purely dependent on x and psi y is purely a

function of y, ok. So, this is not a function of x and that is not a function of y, so which

means that as far as this derivative is concerned psi y is just a constant coefficient, ok.

So, you can put that outside your derivative and as far as this derivative is concerned psi

x is a constant coefficient and you can place it outside, ok. So, that is my differential

equation. 



So, now let us mean let me divide throughout by psi x psi y, ok. Now, E is a constant

coefficient and therefore, I end up with minus h square by 2 m and I am going to divide

throughout by psi x psi y 1 by psi x dou square psi x by dou x square plus 1 by psi y dou

square psi y by dou y square is equal to a constant which is energy, ok. So, if you look at

this particular term here it is got 1 by psi x and its dou square psi x by dou x square there

is no y component at all, there is no psi y, there is no y, ok. So, this parameter here is not

at all influenced if you play around with the y aspects the wall box.

So, if I say increase or decrease L y this first term here should not be should not, it

should not matter  to this  term at all.  And similarly the second term here is purely a

function  of  y  only, and it  should  not  matter  to  it  as  to  what  is  happening  in  the  x

direction.  And  because  this  is  the  case  I  can  rewrite  my  energy  as  having  two

components, one is the energy in the x and the other is the energy in the y. And I can split

this in such a way that I can rewrite this one equation as two separate equations because I

have got the same message, ok. I can write this as, this is the first term of your, this is the

first term on the left hand side and that is equal to E x and let us say minus x square by 2

m 1 by psi y tau square psi y by dou y square is equal to E y. So, let  us write this

equation it split it into these two terms, 

If I were to take this psi x to the other side, I end up with the equations looking that way

I take the psi x and psi y to this side these are my equations. Now, these two are you are

very familiar set of equations which you solve for the particle in a 1D box and therefore,

you can solve these two Schrodinger’s equations independently, ok. So, you can now,

solve these two Schrodinger’s equations independently and say that my psi x has got a

function a wave function that the psi x looks very similar to what you saw before it

should be of this form square root of 2 by L x sine of n x by L x pi by and L x into x. And

psi y will be at the form square root of 2 by L y sine of n pi, pi by n y pi by L y into y, ok.

So, this is psi x it depends on the length of the box in the x direction and it depends on a

quantum number or integer n x. And on this side you have the psi y depending on the

length of the box in the y direction and another quantum number or an integer n y to

satisfy all the boundary conditions. And the total wave function is simply the product of

these two which can now, be written as psi x into psi y, ok. 



So, the total wave function is psi x into psi y which is square root of 2 by L x square root

of 2 by L y into the product of the 2 sinusoid terms, sine of n x pi by L into x sine of n y

pi by L y into y. So, this is the solution or Schrodinger’s equation in a two dimensional

box, ok. 

So, it was convenient for us to separate these two terms, ok. Now, that may not always be

possible. So, for example, if you have, so here the coordinate system I chose it was a

rectangular  box,  and  in  a  rectangular  box  the  x  and  y  directions  were  orthogonal

components. If you look at the basis vectors I have chosen 2 orthogonal components

there. Now, if you had a box say it was shaped as a triangle probably not so obvious, ok.

But nevertheless just to illustrate this point, I think this is a good message.


