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So, here is a better a clearer picture of what I was talking about which is, when you dope

the semiconductor n type, you find that the fermi level E f moves above and towards the

conduction  band.  So,  this  is  the imaginary  intrinsic  fermi  level  position which is  no

longer valid because, we have we no longer have a pure semiconductor.

So, this was the fermi level  location when the semiconductor  was pure and we now

doped with n type; which means, we have increased the electron concentration, which

means we need to now decrease the fermi level, has to pick a place where E c minus E f

has to be smaller. Because, the electron concentration varies as e to the power minus this

gap; there E c minus E f gap.

So, the fermi level will have to move closer to the conduction band edge. Similarly, for p

type doping, we have to increased the whole count which means, we need to reduce the

gap between E v and E f. And therefore, what you say the hole, the fermi level moves

closer to the valence band edge.



So now, these  equations  if  you  remember,  well  these  all  based  on the  Boltzmann’s

approximation. So, we started off with the fermi function which is f of E is equal to 1 by

1 plus e to the power e minus E f by k T and we assumed that e minus E f is much larger

than k T,.

So, if you keep doping the semiconductor more and more and let us say the fermi level is

pushed closer  and closer  towards  the  fermi  level,  you will  we will  end up with the

situation where E f is so close to the conduction band edge that E c minus E f is no

longer greater than k T. Let us say of the order of k T. It is no longer much greater than

your k T. In those cases, we call the semiconductor to be degenerately doped.

And that is a technical term and by definition, the point at which we start calling the

semiconductor degenerately doped is the point at which E c minus E f ok. E c minus E f

this  gap the fermi level  has gone so, close to the conduction band, that this gap has

become less than 3 times k T ok.

So, at T equal to 300 Kelvin you know, k T is equal to about 0.025 million electron volt

which is about 25 milli electron volts. So, 3 times that is about 0.075 electron volt and

when E c minus E f is less than that value, we say that the semiconductor which is n type

doped is  not degenerately doped and a lot  of the calculations have to be done more

carefully and we cannot make many of the assumptions we have made so far.

Similarly, if you are going to dope the semiconductor p type and you start pushing the

fermi level closer and closer to the valence band, we will reach a point where E F is

within 3 k T of the valence band edge and once again, we say that the semiconductors

degenerately doped p type and once again we cannot make many of the assumptions we

have made.

So,  as  far  as  this  course  is  concerned,  we  will  not  look  at  degenerately  doped

semiconductors, we will be very much within this 3 k T threshold and the fermi level

location will be well below these borders. So, if this is the border force, this is say 3 k T,

that is called these 2 energy levels are just to be very clear.
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As far as the scores and the tests and the assignments are concerned, if this is my E V

and we say this is E V plus 3 k T and that is E C minus 3 k T. We will only consider

cases where the fermi level despite any amount of doping lies in these regions in within

this  band  ok.  So,  that  we  can  still  comfortably  go  ahead  and  use  all  these  simple

calculation techniques to calculate your electron and hole count.
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So now, what does doping actually do? So, why is it you know what is the physical

intuition behind the fact that doping significantly improves the electron and hole count?

And what do you mean by doping? Let us look at this with a different perspective.

We already looked at it. As a as a first glance, we know what it does. You know how the

dopant atom bonds with the silicon lattice and contributes an electron and or contributes

a hole. But, let us look at it more closely. So, when you dope, let us take an example of

an n type semiconductor, ok. So, we have a silicon lattice, ok. So, silicon has been a role

model. And therefore, I keep using the word silicon for semiconductor, but that does not

mean that these concepts are not valid for other semiconductors, all right.

So, let us say you had your silicon lattice ok. It had these 4 would we say bonds to the

other silicon atoms and we replaced this silicon with your N type dopant which is a

donor doping which is a species that had 5 electrons.
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So, 4 of them participated in bonding and the 5th one was free to move about in the

lattice. And therefore, it left the donor with a single positive charge because there is 1

electron more that should have been with the donor for charge neutrality.

But is no longer at the donor and therefore, there is a single positive charge. So, if you

think about this species here ok, this 1 electron and 1 positive charge ok, what is the

binding energy? You know what does the energy that is held these 2 species together ok.



One can imagine this to be something like a hydrogen atom. It is not exactly a hydrogen

atom because, there are other electrons present in the donor.

But considering the fact that it is a single positive charge and a single electron that was

initially bound to this donor and which has now moved away from the donor because of

ionization, the energy needed to pull that electron away is the energy required to do. So,

in a hydrogen atom; so, that gives you that gives you a by comparing it to a hydrogen

atom, it gives you a good estimate as to the ballpark number for that energy for that

energy.

So, that is what we are trying to do. We are trying to estimate what does that energy

needed for me to take the electron away from the donor and push it into the conduction

band and by calculating that energy; we can actually calculate the energy level created by

the impurity.

So, what does that mean? So, in a pure crystalline silicon atom, a silicon lattice, sorry

you have  your  valence  band edge you have your  conduction  band edge and if  your

crystalline lattice is perfect, it is perfectly crystalline, no defects, no impurities. Then,

you do not have any states in the band gap. But, the moment you start creating defects,

you start adding impurities, you will start seeing states appear inside the band gap.

And as we move towards more and more disordered materials say you ultimately take it

towards amorphous silicon or a glass, you will find that there is a density of states inside

the gap itself. So, the gap is no longer clean, but we will not go to such extremes at this

point. All you have done now is, we have added a donor, we have added an impurity into

the silicon.

Therefore, there are some traps that have appeared, there have been some states that have

been created inside this gap. And the purpose of this study is to locate those states where

are at what energy are those states sitting. And we are going to do that by identifying the

energy required  to  take  the  electron  out  from this  little  entity, which  is  a  positively

charged core and electron around it.

Now, if you compare it to a hydrogen atom, the energy required would be this with some

corrections. It would be 13.6 electron volts, but we need to correct for certain elements

which is the permittivity of the material is different ok. So, we will we need to bring in a



relative permittivity. You cannot it can no longer be epsilon naught which is 8.85 e to the

power minus 12. You cannot have that value. You need to have a relative permittivity

correction, ok.

So, you bring in an epsilon r square term and you also need to account for the effective

mass of the electron. You can no longer use the mass of the electron as is used in vacuum

because,  you  have  the  electron  propagating  through  the  lattice  and  you  have  this

interaction with the lattice which results in an effective mass of m e star.

So, by taking into account these 2 corrections ok. So, we multiplied by a factor of m e

star  by  m naught  and  divided  by epsilon  r  which  is  the  relative  permittivity  of  the

semiconductor epsilon r square which is a epsilon r is the relative permittivity of the

semiconductor  and  continue  using  a  13.6  electron  volt  energy.  If  you  make  these

corrections taking account, these corrections and plug in numbers for silicon.

So, any styles will be same order as m naught ok. It is not orders of magnitude different.

It could be slightly more or slightly less depending on the difference semiconductors.

And for silicon, epsilon r is the order of 11.7. Say, let us let us call it 10 ok. Just to give

you an easy calculation.

So, the binding energy is about 13.6 electron volt into something which is the order of 1

which is your m e by m naught divided by 100 which is about 0.1 give or take 0.1

electron  volt.  In fact,  it  is  less than 0.1 electron  volts.  Therefore,  this  trap energy is

actually look at the moment you add a donor, what this is saying is that, the moment you

add a donor, you are creating a trap state or you are creating energy states due to this

donor which is located energy level E d, ok.
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So, this is something called as the donor energy level or the donor level and this E d is

located at around 0.1 electron volt from the conduction band edge. So, in the case of

silicon your band gap this is about 1.12 electron volts and this donor dopant has led to

the creation of states inside the band gap and those states are located at around 0.1 or in

fact, less than 0.1 electron volt, that is about 10 percent of the band the band gap, 0.1

electron volt from the conduction band edge.

So, what does this mean? It means that, this donor which was initially charged neutral

had a positively charged core and had all it is 5 electrons ok. So, this was the charge

neutral species and this was charge neutral. Let us say temperature at t equal to 0, but the

moment the temperature increased a little these electrons gained enough energy. They

gained this 0.1 electron volt energy to snap away from the donor and to get into the

conduction band of the lattice.

Therefore, these donors that lost their fifth electron all became positively charged. So, in

other words, they were ionized and these electrons which left the donor and moved into

the conduction band were now free to conduct, ok. So, we have increased electron count

in the lattice the free electron count in the lattice. So, we are not when I say electron

count, you know just as a means of speaking; I mean, it is just the it is understood that it

is the free electron count ok.



So, we are really not interested in the electrons in the valence band there are plenty of

those. So, the addition of the donor has increased the electron count the free electron

count in the conduction band and it has now become positively charged because of it

getting ionized and since the donor level is located. So, close to the conduction band

edge it really does not take too much of temperature to activate these electrons to ionize

these donors.

So, at 300 Kelvin, in the case of silicon, we are able to promote the electron sitting in the

valence band. If you add it, consider your pure intrinsic semiconductors, pure intrinsic

silicon, our 300 Kelvin we can promote about 1 e 10 per cc electrons from the valence

band to the conduction band and that is at an energy gap of 1.12 electron volt.

Here, I have a gap which is 10 percent of the original energy gap which is 0.1 electron

volts because of these donors. And therefore, it is much easier to ionize these donors and

this can happen at a much lower temperature. Again, we can ionize these donors and

promote all these electrons into the conduction band. And therefore, the addition of a

donor like dopant can significantly improve the electron population,.

The same argument can be made for holes. So, that is that is what the doping, that is

what doping is doing. If you look at it from the perspective of the energy levels and the

creation of these traps inside the gap.
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So now, let us calculate again ok. So, we know we want to calculate the free electron

concentration and the hole concentration in the valence band after doping right.

So, this calculation is straightforward. It is just N c e to the power minus E c minus E f

by k T. So, that is the calculation, but then there is a much nicer or a much more intuitive

or much more useful relation that you can get now since. So, let us let us draw this that is

E c that is E v and now you have some E f which is different from your E i. E i is just

offset from mid gap. It is close to mid gap. So, I will just locate it there.

So, that was the fermi level for a pure semiconductor. But now, after doping, the fermi

level has shifted to E f and if it is n type doping, it is E f is going to be closer to E c. Now

this expression tells you that the electron count is N c e which is the effective density of

conduction band states k, effective density of states in the conduction band into e to the

power minus E c minus E f by k T, but E c minus E f is also equal to E c minus E i ok.

So, that is E c minus E i minus E f minus E i.

So, this term is essentially that minus this and we can sort of split that expression by

bringing in the E i term here ok. So, why am I why are we splitting this? Because, this

coefficient here is nothing but the electron concentration in the intrinsic semiconducto

because, your E f has now become E i and for a doped semiconductor this expression this

electron count is essentially this term into the exponent having an energy gap which is

the difference between the new location of the fermi level and the intrinsic fermi level

position 

So, this expression is essentially n i e to the power E f minus E i by k T. So, these 2

expressions are identical. So, you could count your electrons by saying it is N c e to the

power minus E c minus E f by k T or we could say that, it is n i e to the power E f minus

E i by k T. So, this expression relates both of these expressions are useful ok. It depends

on the situation.

This expression relates the carrier count by noting down the energy difference between

the conduction band edge and the fermi level. Whereas, this expression relate makes a

carrier count by noting down the energy difference between the new fermi level position

and the intrinsic fermi level position. So, this is the fermi level position for an intrinsic or

pure semiconductor and after doping, it is relocated to E f. And, in this expression can



tell you what this new fermi level. You know, how far this new Fermi level moved away

from E i ok.

So, both these expressions are useful and we could you know create a similar expression

for the holes which is the whole population in the valence band is basically N v into e to

the power E v minus E f by k T.
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We again bring in the E i and you find that the whole population can also be represented

as n i e to the power minus E f minus E i by k T. So, this expression; So, which is this

expression here for the electron count and this expression here for the hole count looks

more or less similar except for the fact that the exponential here has got a positive sign

and the exponential here has got a negative sign, ok.

So, that is the that is the major difference. So now, what is n into p in the case of an

intrinsic semiconductor which can be what was the electron and hole count in an intrinsic

semiconductor my E f is equal to E i. Therefore, this experiment is 1 and therefore, the

electron and hole count were both equal to n i. So, in an intrinsic semiconductor we had

n is equal to p is equal to n i and the product n p was equal to n i square.

But, what about the doped semiconductor r? What is this product? N p, is now equal to n

i e to the power E f minus E i by k T into n i e to the power minus E f minus E i by k T

these  2  terms  cancel.  And  therefore,  this  product  is  still  equal  to  n  i  square.  So,



irrespective of whether the semiconductors doped or intrinsic the electron count into the

whole count is  always equal  to n i  square,  provided the semiconductor  is at  thermal

equilibrium which means that you have taken the semiconductor.

You have either captured intrinsic or doped it you have taken the semiconductor and you

kept  it  in the dark.  You have not  applied any light.  You are not thrown applied any

voltage. You kept them in the dark as it is with the only influence on the semiconductor

being due to temperature. So, that was thermally that is thermal equilibrium. So, every

process that is going on inside the semiconductor is very nicely balanced by a reverse

process.

So, there is nothing changing. I mean, there is there are many things going on you are

creating a lot of free electrons. You are losing a lot of free electrons. All this is going on,

but it is all  balanced in a very nice way, that statistically speaking, then the intrinsic

carrier concentration is fixed.

And, you know the other properties and semiconductor is not really waiting with time

ok. So, that is what you mean by thermal equilibrium and this property that n p is equal

to n i square is very useful. Because, if I know my electron count and I want to find my

whole  count,  I  just  need  to  do  n  i  square  by  n,  ok.  So,  this  gives  me  my  whole

population. So, this relation that the n p is equals to n i square something called as a mass

action law.

And this might appear to be a very odd looking term. You know what is the meaning

behind mass action law? But,  it  essentially  comes from looking at  chemical  reaction

rates, ok. So, you can think of it as a chemical reaction that is going on. And what is the

reaction it is got to do with the generation and the recombination or the loss of these free

carriers again? We will talk about that later. So, that is the that is the process that is going

on and just like how you sort of consider reactants in a reaction for a chemical reaction.

They  consider  the  electron  and  hole  count  in  this  process  of  thermal  generation  of

carriers and thermal recombination of carriers which we even talk about soon.
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So, what does doping do. So, we looked at the we now have a good understanding of

what  doping does in  terms of  equations,  but  it  is  always nice  look at  this  graphical

picture, ok. So, let us go back to our picture for intrinsic semiconductors, ok. So, this was

my density of states there are many plots drawn on this.

So, please do not get confused. So, that is the density of states. So, that is density of

states versus energy this dotted line is the fermi function. It is f of e versus energy and as

we notice, it takes a value of half when it crosses e is equal to E f and since this is an

intrinsic semiconductor, this E f is equal to E i.

So,  that is my intrinsic  semiconductor  position and we already saw that the electron

count was basically the product of the density of states in the conduction band and the

probability of finding carriers in the conduction in these states. So, that was my electron

count which is this product and that is the whole count.

Now, during by doping, what we have done is if you dope it, n type, ok. So, this is the

intrinsic case where n is equal to p is equal to n i n p is equal to n i square. If you dope it,

n type we have added a donor dopant and let us say this is my imaginary E i, this was E i

in the intrinsic semiconductor. By adding a donor doping, we have increased electron

population and we have effectively moved E f closer to the conduction band edge and it

is located above E i.



Now, since the fermi level is located at a different location from E i, the fermi function

shifts ok. It is no longer going to remain the same v. It is now going to adjust itself. So,

as to take a value of half in this point, earlier the fermi function was taking a value of

half at E i. But now, it is going to take a value of half at E f. Because, earlier E f was

equal to E i. So, and now E f is not equal to E i.

So, if the fermi level if you if you can imagine the fermi function as moving having

moved up a little ok, along with E f ok. Then, it is very clear to see that the probabilities

here are now suddenly increased the values which are initially very small. So, let us say,

initially the value here was less than half and let us say it was 0.2. But now, since we

have moved the entire f of e curve upward, this value is now much greater than 0.2 ok.

At here and here it was half which is 0.5. So, here it could now become 0.3 that is the

value of f of e which means the probability of me finding an electron in these states has

increased the density of states hasn't changed ok. It is not going to change unless you

dope it very strongly. We are not talking about those levels of dope.

If the density of states hasn’t changed, but the probability of finding an electron in those

states has increased in the case of n type doping [noise.] The probably defining electrons

in the states above E f have increased in the case of n type doping and it is not only that

the  electron  population  is  increased.  So  now,  the  electron  population  is  increased

significantly,  ok.  So,  you  can  see  that  this  shaded  region  has  got  a  larger  area  as

compared to this region here which was the intrinsic case.

It  is not only that the electron population is increased the whole population has also

decreased ok. Why is that because, this is the fermi function. Let us say, this was this is

the value of 1. It is asymptotically heading towards 1. As you go to minus infinity and

the probability of finding hole depends upon this difference, it is 1 minus f of e.

Now, initially the probability of m e finding a hole at say some energy level here was 1

minus f of e. Let us call that to say 0.2, but since we have moved shifted the entire fermi

f of e curve upward because E f has gone up. These values are not suddenly decreased.

So, what was 0.2? At some energy level there has now become a much smaller number.

Let us say it is 0.1. These are just numbers under stuff, these are not calculated values,

these are just numbers I am putting out in order to get the message across. So, what was



the 1 minus f of e was much larger than intrinsic case. But the moment we doped it n

type, 1 minus f of e for energy levels e less than E f have suddenly gone down which

means, the probability of m e finding a hole in these states has suddenly gone down. And

therefore, while the electron count has increased the hole concentration has decreased.

The area under this curve which is symbolizing the whole population is now become less

than  the  case  of  the  intrinsic  semiconductor.  So,  in  an  intrinsic  semiconductor,  the

number of holes were n i, the hole concentration was n i, the electron concentration was

n i in an n type semiconductor. The electron concentration is greater than n i, but the hole

concentration has gone less than n i and how much less.

If n is the electron concentration the hole concentration has to be n i square by n. In the p

type semiconductor, the opposite happens if you have doped semiconductor p type, we

have moved the fermi level down. So, this is my intrinsic fermi level position; that is, E i.

We have now moved the fermi level below E i,.

And, f of e has to shift downward in order to take a value of half. So, you can think of f

of e as you know sort of pinned to this fermi level position, right. So, if this is the E f

imagine a sort of a pin right there because, it always has to take a value of half. So, as we

move this up and down, this entire curve also has to move up and down it has to move

either up or it has to come down. So, that is f of e responding to the relocation of E f.

So, by now, moving E f downward, f of e is also shifted downward which means that the

probability of m e finding an electron has now gone down drastically. So, it was 0.2.

There it had increased to 0.3 for n type doping. But now, it has become 0.1, that is a 1 the

probability of m e finding a electron in this stage above E f has gone down.

So,  although  the  density  of  states  hasn't  changed,  the  number  of  electrons  in  the

conduction band has decreased and it will decrease to a value less than n i which was the

intrinsic case for a p type dopant. For n type doping, the electron count has increased

electron concentration is increased and similarly, if you look at 1 minus f of e, that is this

gap, since the fermi level has now moved down.

Since the fermi level is moved down and it is brought f of e along with it. This value of 1

minus f of e has now increased which means the probability of finding a hole in the

states below E f has now gone up. And therefore, my whole population has now suddenly



shot up the hole count in the valence band states has now gone up. So, here in case of p

type doping my electron count is going to be less than n i and the hole count is going to

be greater than n i.

And in all cases, n into p is equal to n i squared. So, if I know my electron count, I can

find my hole count as n i square by n or if I know my hole count, I can find my electron

count as n i square by p.


