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So, now, let us sort of visualize this ok. So, let us say this is my fermi level Ef and this

dotted line that you see ok, so, this dotted line is your fermi function. So, this is my fermi

function that is f of E.

Now, at E equal to Ef, it takes a value of half and below this it starts to approach the

value of 1 and above that it  starts to approach the value of 0. So, that is your fermi

function. So, that is the probability that an electron occupies the energy level. This line

here, this solid line here, which I mark in red, is the density of states. So, that is the

density of states in the conduction band, which varies as the square root of E minus Ec

and this is the density of states in the valence band, which varies as the square root of E v

minus E ok.

So, these are the number of states available and that is the probability that these states are

occupied and the product of these two essentially gives you the electron count in the

conduction band and the whole count in the valence band. So, the product is given by

this region, which I am shading here. So, you see that the density of states is large and



right at this point the density of states is 0, the fermi level, the fermi f of E is not 0, but at

0 times some non zero value, which is essentially 0. So, you have 0 electrons here, but as

we just, as we just move away from this point as E goes greater than Ec square root of E

minus Ec is no longer 0.

So, you do have some density of state and you have the maximum possible fermi level,

fermi f of E value the maximum possible value of f of E, sorry not the fermi level, the

maximum  possible  value  of  f  of  E  and  therefore,  the  product  begins  to  take  a

significantly large number and therefore, you will find that the electron count increases,

but then as you move further up the density of states goes up, but the probability of

occupancy comes down and therefore, the electron count starts to fall off.

So, you find that the electron distribution and energy above the conduction band edge

looks like what is shown in this shaded region here. Similarly, if you look at the whole

population or the whole count in the valence band edge, you have the same story here.

You have the density of states being 0 and 1 minus f of E, which is basically, this gap

being non zero ok. So, we are interested in this number.

Now and therefore,  the number of holes right  at  this edge is  0,  but then as we start

heading lower below Ev; Ev minus E increases, but at the same time the fermi level

starts approaching 1, which means this value, which is basically 1 minus f of E begins to

decrease and you find that the probability keeps getting down, which, which allows the

number of holes or the whole distribution in energy to take a shape as shown in this

shaded region here ok. So, that is a graphical visualization of how the electrons and holes

are distributed in energy all right.
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So,  now,  let  us  start  making  some  definitions.  Now,  let  us  say  I  have  a  pure

semiconductor and what I mean by pure is it is not, there are no impurities present inside

the semiconductor and I am bringing this concept up in the context or something which I

am going to talk about very soon, which is something called as doping. So, in a pure

semiconductor, you have your valence band, you have your conduction band and you

initially had a T equal to 0, you had all the electrons being bound by all the atoms of the

semiconductor lattice.

I know you had all the valence electrons all located in the valence band, the conduction

band was largely, it was completely empty at T equal to 0. Now, as we started increasing

the  temperature  ok,  the  electrons  gained  some  thermal  energy  and  some  of  these

electrons  were  promoted  to  the  conduction  band.  So,  you  started  having  holes  or

vacancies  being left  behind in the valence band and electrons  being promoted to the

conduction band. So, this was as we started increasing temperature.

Now, in the case of intrinsic silicon at 300 Kelvin, you will find a count, if you look at

the number of electrons  per unit volume, sitting in the conduction band, it would be

about say 1 e 10 per cc all right. So, so this is what happens as you start increasing

temperature, which means that the number of electrons present in the conduction band,

must be equal to the number of holes present in the valence band, because it is these,

these holes are the consequence of the electron getting promoted to the conduction band.



So, if you were to measure, if you were to take it carry count of the number of electrons

in the conduction band and the number of holes in the, in the valence band. These two

are equal ok, one is led to the other and that concentration has got a special term for an

intrinsic  or a pure semiconductor and that is something called as the intrinsic  carrier

concentration and we will always denote it by the symbol ni ok.

So, both when I say the number of holes is equal to ni. It means that the holes have the

hole  concentration  has  matched  their  intrinsic  carrier  concentration,  which  is

semiconductors  like  as  though  it  would  have  been  in  a  pure  state  and  all  this  is  a

conditions, which is known as thermal equilibrium which is I have not thrown light on

the semiconductor. You have not applied any voltage, you just have the semiconductor

sitting in dark sitting at a temperature at some temperature T and as a consequence of the

temperature you applied.

You have a certain statistical count or you have a certain population of free electrons and

holes and that population is called as the intrinsic carrier concentration, which is ni ok.

Now, if you go back to what we looked at what it implies is that, if you have a density of

states and you have a certain f of E the product of your density of states and f of E

integrated over your band edges that is this count matches the number of electrons. So,

the  whole  count  matches  the  electron  count  and  we,  we  always  talk  in  terms  of

concentration.
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So, n is the number of electrons per unit volume p is the number of holes per unit volume

ni is the intrinsic carrier concentration per unit volume ok. So, now we can sort of bring

in some of the concepts we learned earlier. So, we earlier found that n is equal to the

effective density of states in the conduction band into e to the power minus Ec minus Ef

by k T where Ef is the fermi level right and Ec is the conduction band edge 

Similarly, p was equal to and v into e to the power e v minus Ef by k T where nv is the

effective density of states in the valence band. Now, in an intrinsic semiconductor n is

equal to p is equal to ni ok. So, which is the intrinsic carrier concentration, this means

that I should be able to equate these two terms ok. So, what happens? So, n is equal to ni

ok. So, ni is essentially that term that p is also equal to ni.

So, p is equal to. So, ni is also equal to that term there and if I take a product of these two

equations. Let us say this is equation 1 and this is equation 2 and if I multiply these two

equations, I get ni square on the left side and I get Nc Nv into e to the power E c minus E

v minus of Ec minus E v. So, because you have the Ef term will cancel off and you have

Nc Nv e to the power minus Ec minus Eb by k T. So, that is Ec that is E V and this is Ec

minus E V which is nothing, but your energy gap.

Therefore, ni square turns out to be Nc into Nv into e to the power minus Eg by k T.

Now, what is Nc? Nc is a constant right, it only depends upon some universal constants

and the effective mass of the electron and v is also a constant, it depends upon several

universal  constants  and  the  effective  mass  of  the  whole,  Eg  is  again  at  a  given

temperature, eg is a fixed parameter right. You have the energy gap.

So, which means to say that, this ni square seems to be very much a constant as long as

you do not vary Nc Nv and Eg, you cannot vary ni square and this is a very powerful

relation, because it tells you a method to count at a given temperature, if I want to know

what is the intrinsic carrier concentration, it is essentially the square root of N c N v into

e to the power minus Eg by 2 k T.

So, as the energy gap increases the ni decreases and that is very intuitive, because as the

energy gap decreases, I need a higher temperature for me to promote my electron from

the valence band to the conduction band and therefore, my intrinsic carrier concentration

decreases. So, this is a very powerful relation. It is a very helpful, a very useful relation.
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So, let us play around with this a little bit more v. So, now, let  us say we have our

intrinsic semiconductor. Now, when we discuss the fermi level, we really did not locate it

ok, we just sort of vaguely, drew it somewhere, between Ec and E v, we did not really

locate it accurately. So, what is the accurate location of the fermi level? So, we know Ec,

we know Ev, because in a semiconductor Ec is defined by the electron affinity ok.

So, there is a certain electron affinity and that defines, my Ec and then I have my energy

gap and therefore, I know Ev with regards to Ec ok, but where is this fermi level located,

because the fermi level location is important, because that is where f of E is going to take

a value of half f of E is equal to Ef is equal to half.

So,  what  is  the  location  of  the  fermi  level?  So,  once  again let  us  get  back to  these

equations, we know that n that is the number of electrons in the conduction band is Nc e

to the power minus Ec minus Ef by k T p is Nv e to the power Ev minus ef by k T and

for an intrinsic semiconductor what we do is we took that fermi level a special name ok.

So, we want to know where is the Ef for this intrinsic semiconductor we give it a special

name and we call it the intrinsic fermi level ok. So, E i or sometimes you know its Ef i is

also used this Ei or Efi is something called as the intrinsic fermi level and we are trying

to  identify,  it  is  location,  which  is  basically,  the  fermi  level  location  in  a  pure

semiconductor. So, for a pure for an intrinsic semiconductor I can replace this Ef by E i.



So, Ef we will keep it as a more general fermi level, variable and E i, we will use it

especially only to indicate the fermi level of intrinsic semiconductors. So, then in that

case your n for a pure semiconductor, you will find n is equal to n i, which is Nc e to the

power minus Ec minus E i by k T ok. I am just replacing the variable Ef with the variable

E  i,  because  E  i  has  got  a  special  status,  it  is  the  fermi  level,  location  for  a  pure

semiconductor and p is also equal to n i, which is Nv e to the power E v minus Ef by k T.

So, that is your p and since both these have the same value, there or both equal to ni, you

can equate the number of electrons with the number of holes with that being the intrinsic

fermi level and just by, by solving this equation, you will find that E i is equal to Ec plus

Eb by 2 plus k T by 2 ln of Nv by Nc. So, what is Ec plus Ev by 2, it is the location

exactly at the mid gap ok.

So, that is my energy gap, if I were to take a location here, it is Ec plus E v by 2 and what

this is saying is that you reach mid gap and you offset it by this quantity that is kT by 2

ln of Nv by Nc, if you were to offset yourself from the mid gap by this amount of energy,

you will find the location of the intrinsic fermi level. So, to draw this more cleanly, the

intrinsic fermi level is not generally located right at mid gap, it is slightly offset from mid

gap.

So, let us say this is E c that is E v, let us say that is perfect mid gap Ec plus E v by 2.

Now, if this quantity Nv by Nc is a positive, is, is a say Nv is greater than Nc. So, which

means that this quantity is a positive number then my Ei e location, my fermi level is

actually located there. So, that is my intrinsic fermi level position, which means that my f

of E ok.

The probability of occupancy will take a value of half at that location and that energy.

So, what; so, when does this term become equal to 0, because if this term had to become

equal to 0, then is then the fermi level, the intrinsic fermi level is located exactly at mid

gap. This term will become 0, if N v is equal to Nc, because then you have the logarithm

of 1, which is 0.

So, when does Nv become equal to Nc, if you look at the expressions for Nv and Nc, you

will find that you have most of the terms to be constant or most of the terms of universal

constants,  except  for  the  effective  mass  of  the  holes  and  the  effective  mass  of  the



electrons. So, if the effective mass of the holes matches the effective mass of electrons

then you will find that the intrinsic fermi level lies exactly at mid gap.

Otherwise, it is going to be offset by this number and in fact, you could take this 3 by 2

and probably locate it outside the logarithm. So, you can call that 3 by 4 ok. So, that is

your expression for the location of the intrinsic fermi level ok.
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So, now, we are going to approach a different topic and we are going to call this as

something called as doping and I will explain what doping means.

Now, we know the location of the intrinsic fermi levels. So, you know this is Ev, you

know that is Ec and I know my intrinsic fermi level location that is E i, that is the fermi

level in a pure semiconductor. Now, I could. So, the pure semiconductor implies I have

my silicon lattice right it is a yeah. So, if you are going to talk about silicon, you have

your silicon lattice, which each silicon atom being bonded to four other silicon atoms ok.

If you were to look at it, in the tetrahedral lattice formation it is essentially this, it is got

four neighbours and these have got four neighbours and so on, the lattice continues that

way. So, if I were to now, create a defect, I get rid of the silicon atom and I bring in some

other species. The silicon has got four electrons in the valence shell; I can bring in some

other species that sort of forces itself to bind and accommodate itself into this lattice but

in order to do.



So, it could change the electron or hole population it could either give away an electron

or take away an electron. So, let us say you are going to add an impurity into the lattice,

you are purposefully adding a measured impurity concentration into the lattice and if this

is all done at a suitably high temperature, which means if it is, if the temperature is not 0

kelvin.  These  impurities  could  get  ionized  and  they  could  contribute  or  change  the

electron and hole population in the semiconductor.

So, if the electron and hole population changes the fermi level location in this doped or

impure  semiconductor  will  shift  away from Ei ok.  So, this  is  E i  it  is  got  a special

relevance ok. So, it is an imaginary fermi level to remember, because that is what your

pure  semiconductor  look like.  We will  draw it  with a  dotted  line.  Now, if  you take

another, if you take the same semiconductor and you dope it, you are going to create

impurities and you could the fermi level, could take up a new position and we will now,

call it Ef ok.

It is no longer Ei and E i is just this dotted imaginary line, which is no longer valid for

this new semiconductor, but it gives you a reference as to how much of impurity you

have added to the semiconductor. So, you could actually artificially move the fermi level

location about by adding impurities,  in the semiconductor and this concept of adding

impurities to the semiconductor, in order to relocate the fermi level is called as doping.

Now, why will the fermi level relocate? Firstly, because your n is equal to Nc e to the

power minus a in, in, let us say in an intrinsic semiconductor, in a pure semiconductor. It

was Ec minus E i by k T. So, that was your n which is equal to ni. Now, I have changed

n, now, I made n to be different from n i ok. So, let us say I made n to be greater than ni.

I cannot have this exponent, have the same value here.

So, now my Ef, it will have a different value for Ef, which is going to be smaller as

compared to Ec minus Ef. So, in general, so, we will get back to the general expression,

which we derived, which we looked at earlier by you know sort of integrating the from 0

to from our Ec to infinite when we integrated the density of states into f of E into DE we

obtained this expression and this expression had the fermi level term in it.

 And for an intrinsic case, this fermi level was the special intrinsic fermi level, but in

general  we  will  retain  this  symbol  Ef  and  increasing  n  will  relocate  Ef  in  order  to

decrease, this term decreasing n will relocate Ef to increase this term, because it is E to



the power minus a larger number to in order to reduce n. So, if a semiconductor is doped.

So, as to increase the electron count, you will find that this term has to decrease or the

fermi level will move above will move away and above, the intrinsic fermi level and this

semiconductor is called as an n type or an n doped semiconductor.

The doping or the impurity was added to increase the electron count. On the other hand if

the doping or a dopant is added to increase the whole population then it is called a p type

or a p doped semiconductor.
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Sorry, if the dopant is added to increase the whole population. It is called a P type or a P

doped semiconductor, where your Eb minus Ef. So, this term has to increase or decrease

in order to accommodate that.

So, you will find that if you are trying to increase the whole population Ef will have to

move below E i in order to, in order to, get closer to the valence band edge. So, that is E

v ok. So, now, how do we; so, let us just talk about more technical terms. So, you have

two kinds of doping ok. So, you have p type doping, where you are trying to increase the

whole population and relocate the fermi level. So, this is the intrinsic fermi level, you are

going to relocate the fermi level to some location here.

So, that to; so, as to bring down, this value of Ef minus Ev and this kind of doping was

called  as  p  doping and it  is  done with  something  called  as  acceptors.  So,  what  the



concept here is that you have your silicon lattice. So, let us say, we will just draw these 5

atoms and initially each silicon atom was bonded to 4 other silicon atoms.

So, it had a valence it had 4 valence electrons and now, if I were to remove the silicon

atom and bring in an impurity, which has got only three electrons ok. It is this impurity

has got three electrons and it is going to participate in bonding. So, it is going to bond

with 3 of the silicon atoms, but in order to bond with the fourth. It is going to take away

an electron a free electron, from the lattice and it is going to bond with the 4 silicon

atom.

So, it  is going to complete,  it  is bonding by taking electrons away from the existing

electron population and it is going to essentially leave behind a hole. So, therefore, in

some sense, it is improved the hole to electron ratio. It has increased the hole count with

respect to the electrons and therefore, this dopant, which accepted the electron is called

as an acceptor like dopant and this kind of dopant is called a p type doping.

Now, you can depending on the concentration of dopants. I have added, I can change the

hole  and  electron  population  of  accordingly,  and  therefore,  it  is  useful  to  define  a

concentration for your acceptor ions and we typically denoted by the symbol NA. So,

capital NA is the number of acceptor dopants added to the intrinsic semiconductor per

unit  volume.  So,  it  is,  it  is  always  per  unit  volume ok.  Now, similarly  we can  add

something called as donor dopants in order to create a n type semiconductor, which is

you have a silicon lattice, where the silicon atoms are all bonded to 4 other silicon atoms.

And now, I am going to bring in another species or different an impurity, which has got 5

electrons in the valence shell. So, we are going to bring in an impurity, which is got 5

electrons, which means it is going to use up 4 electrons to bond itself, to accommodate

itself into the lattice, but it is got this fifth electron that is free and if it is ionized, this

fifth electron is free to move about in the lattice.

So, this is essentially increased the electron population. So, this kind of doping, which

increases the electron population is called an n type doping and it is done with donor

dopants, because this dopant donated an electron as opposed to accepting an electron, it

is called as a donor dopants and what this does is, it essentially moves the fermi level



above  Ei  in  order  to  decrease  the  Ec  minus  Ef  gap  and  increase  the  electron

concentration.

And once again, it is useful to define a concentration for the donors and we do it with the

symbol N D, which is the number of donor dopants per unit volume ok. So, what does

doping actually mean. So, it means that you have added and ion ok. So, if this dopant is

ionized, what you have essentially done is you took a neutral species as a neutral.

Let us say you are trying to do n type doping, you have taken a neutral species, which is

an atom, which had 5 electrons in the valence shell and several other electrons in the

inner shells and it had some positive charge in the nuclei and you implanted it as a defect

inside your silicon lattice and since one of the electrons could not be used for bonding.

So, these four were used for bonding.

But this electron could not be used and at a significantly high temperature, this electron

got away and became a free electron in the silicon lattice. This is free, which means that

this species now is essentially positively charged, because the charge in the nucleus is

knob not balanced by the electron charge cloud. So, it is fixed, because it is now, bonded

itself to the silicon lattice, it is not a moving charge. This positive charge is now fixed.

But it;  so,  it  is a fixed ion,  which has got positive charge and it  is left  behind,  free

moving electron, it has got a negative charged, negative charge. So, essentially by doping

the silicon atom n type,  we have maintained charge neutrality, for the entire  system,

which is the silicon is charged neutral, the dopant plus this, this ionized dopant plus this

extra electron balances itself out in terms of charge and the entire species charge neutral.

It is not only a charge to the silicon atom ok, it is charge neutral.

All we have done is added an entity, which was charged neutral and ionized it, which

means we have pulled an electron away and left behind a fixed in mobile positive charge.

So, that is what has happened, when we doped it n time. Similarly, when we doped it p

type, we have not changed the charge, we have not disturbed the charge neutrality of the

silicon.

So, we took her neutral species which had three electrons and an equivalent balancing

negative or positive charge inside positive charge is the nucleus and we added this into

the silicon lattice and this species now gained an electron, it accepted an electron in order



to  bond  with  the  silicon  lattice  and  by  accepting  electron,  it  became  an  effectively

negatively charged ion, because now the positive charge in the nucleus does not balance

the excess negative charge on the shell.

So, it became a negatively charged ion which is an immobile ion, but it left behind a

positively charged mobile species called the hole ok. So, the hole is free to move about in

the silicon lattice and you have an ionized species here which is got a negative charge

and is fixed. So, essentially what you are doing, my doping is for p type doping we are

creating fixed negative charges immobile negative ions in the silicon lattice.

And mobile holes added to the silicon lattice these are mobile and in the case of n type

doping we are creating fixed immobile  positive charges and mobile  electrons for the

silicon lattice. So, essentially the entire system is charge neutral. Now if all the dopants

were all ionized, if everything that we added were all ionized what is the concentration

of this fixed negative charge, these negative ions in the case of p type doping.

It is an NA, because we added any acceptor like dopants per unit volume all these NA

dopants were ionized and all of them gained a negative charge. So, you have NA fixed

negative charges per unit volume sitting in your p doped silicon. On the other hand, your

donors  we added ND donors  per  unit  volume.  All  of  them got  ionized  and they all

became positive ionized species and we have ND positively charged immobile species

located per unit volume in the silicon.

So, that is the situation when we dope it and clearly, we are affecting the electron and

hole concentration,  which means we are affecting the fermi level location.  Now it is

possible to counter dope a silicon so you add not only NA or ND we add both positive

and negative or we add both acceptor and donor dopants. So, this is something called as

counter doping now if we add both ND and NA, but your ND turns out to be greater than

NA, then  it  is  equivalent  to  you doping the  semiconductor  n  type  with  an  effective

dopant concentration of ND minus NA, it is like as though we have added this many

donor atoms 

On the other hand, if NA is greater than ND the semiconductor will behave like a p type

with an effective dopant concentration of NA minus ND. Now it is possible to balance

NA and ND and make the semiconductor pure, like as though it is intrinsic, and this is

something called as complete compensation. So, we have completely compensated any



dopant with the counter. So, these things are quite useful, and it would become clearer

when we do a problem session that we will  solve some problems, you know just  to

calculate and get comfortable with the calculations.


