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Density of States - Continued, Fermi Function

Now, what about a 1D case?
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We will quickly run through the same procedure. But, now we need to ask us a question

how many states per unit energy per unit length, in a 1D material, ok. The 1D material

does not have volume or area it is just got a length.



(Refer Slide Time: 00:35)

And we follow the same set of questions how many solutions are Schrodinger’s equation

per unit length in k space, ok. And now, we have only a 1 D box. We are only interested

in a 1 D box and we only have.

So, let us say this is the x direction. The box has got length L x and we are only have got

a k x space. There is no k y, there is no k z and there is only a k x space.
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And the wave function for a 1D box is simply this and that is my k x term which is

quantized with the quantum number n x. And therefore, in this space, I have you know

you have your pi by L x 2 pi by L x and so on, ok.

And if you look at the number of solutions per unit length of k space first so, these are

my unit cells. Now, since that is 1 unit cell, that is the second unit cell, ok. If you look at

the number of solutions per unit cell, each cell has got 2 solutions. There is one solution

or this end and one solution on that end. There are 2 solutions, but each solution is shared

by 2 unit cells.

So, if you look at this solution, for example, it is shared by this cell as well as this cell,

right. So, each cell is just a line this line segment, ok connecting these 2 discrete points

and these discrete points of the solutions to Schrodinger’s equation.

So, each solution is shared by 2 cells and therefore, there is one solution per unit cell and

what is the length of the unit cell? The length of 1 unit cell is pi by L x, ok. So, the length

of this unit cell is this length here which is pi by L x. So, the number of solutions per unit

length is going to be one solution divided by the length of the unit cell which is L x by

pi. But now, once again we need to make our correction, ok.
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 So, let us deploy our correction terms. You know we have these correction terms in the

case of 3D and 2D. So, L x by pi, but then we are double counting for n ok. For n x could

take plus and minus values.

So, we need to divide by half but then there are also 2 spins, ok snd therefore, this is the

correction term. So, the correction term is simply 1 and therefore, you your initial guess

on the answer was right. So, there are these many solutions to Schrodinger’s equation per

unit length in k space. And now, the next question how many solutions of Schrodinger’s

equation between k and k plus dk.

(Refer Slide Time: 03:40)

So now, let us draw extend our k x, ok. You have this massive grid of points sitting on

this line it is a 1D case. So, we only have 1 dimension. You have so many points and then

I. So, what is the where is my k; my k is going to be this long and my K plus dx is there

ok.

So, what I am interested in is the number of solutions in this region and this region has

got a length of dk. So, how many solutions exist in this region between k and k plus dk?

So, that is my question, ok. So, k now is simply k x, there is no k x the k y or k z. So, k is

simply k x and that is k plus dx a dk and this is K and the region between them has got a

length of dk and we are trying to find out how many states exist between k and k plus dk.



Now, the number of states per unit cell was already this right. It was L x by pi per unit

length. So, there are this many these many solutions per unit length and we want to know

how many solutions in this region of dk, for a length of dk how many solutions exist and

the answer is L x by pi dk.
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So, there are decay into L x by pi states or solutions of Schrodinger’s equation solutions 

in the region between k and k plus dk. So, that is the answer we are looking for. And 

now, the next question is of course, convert everything to energy, ok.

(Refer Slide Time: 05:36)

.



So now, we know that there are d k L x by pi solutions between k and k plus dk. Now,

how many solutions exist between E and E plus d E. So, we convert all the terms from k

space to E space to energy E and we use the same set of relations ok. The only thing is

this time we only have a decay term ok. That is, so, dk is related to E in this manner.

So, L x by pi dk is simply L x by pi into this particular term here which is your dk. And

therefore, there are these many solutions, ok. So, there are L x by pi into we can cancel

some terms of. So, you have m power half E to the power minus half d E by 2 power half

h bar. So, you have these many solutions present between E and E plus d.

Now, of course, the next question is, we want to get to per unit length therefore, how

many solutions per unit length ok.

(Refer Slide Time: 06:58)

So, we have these many solutions between E and E plus d E and the pull and the length

of the box is L x. Therefore, that divided by this is the number of solutions between E

and E plus d E per unit length of your semiconductor and finally, to get to the density of

states, we need to get a per energy count, ok.
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So, how many states are present per unit  length per unit  energy? So, we once again

divided by d E, we get rid of the d E term and you have this little answer here which is

the density of states for a 1D material. So, there are m power half E to the power minus

half 2 power half, there is a square root of 2 h bar pi states per unit length per unit energy

in a 1D material.

So, how does the density of states vary with energy for a 1D material? It varies as E to

the power minus half. So, you see a nice trend here. So, for a 3D material you saw that

the density of states was proportional to E to the power half for a 2D material the density

of states was proportional to E to the power 0 or in another sense, in other words, it was

not dependent on E. And for a 1D material, the density of states is proportional to E to

the power minus half, so, that is how it varies from 3D to 2D to 1D.
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So, what is the density of states for a 0D material. For a 0D material, you have neither a

set of points in k x nor k y nor k z. You only have one solution, one probably just 1 point

in k space. And therefore, your density of states is simply a direct function, ok. You have

states at one particular energy. So, if you wish this could be written as at one particular

energy and you have say 2 spins and therefore, that is permitted, ok.

(Refer Slide Time: 09:37)

This is finally, summarize the you know the concepts on the density of states and we

looked at 3D materials; wherein we found that the density of states depended on the E to



the power half, that is, it varied with the square root of energy for 2D materials. The

density of states did not vary with energy at all. So, you could call it as it varying as E to

the power 0. For 1D materials it varied with E to the power minus half and for 0 D

materials which are you know similar to quantum dots it is just a delta function of the

energy. There is just 1 or 2 energy states and the 2 is (Refer Time: 10:18) for the 2 spins.

Now, in this course, we will focus mostly on 3D materials, ok. So, and therefore, this is

the density of states picture that is of great use to us. So, we have our semiconductor

which has got a valence band and it is got a conduction band. There is an energy gap, ok.

And that that is called E g and then you have states in the conduction band above the

conduction band edge and you have states below the valence band edge, ok. And the

density of states which is the number of states per unit volume per unit energy varies as

E minus E c to the power half; so, this is like a square root behavior.

Similarly, here too you have a square root behavior with the density of state distribution

and inside the gap as long as the semiconductor is very clean, as long as it is the perfect

crystal, you have no states. So, if you look at this density of states here, it is 0. And you

have a density of states varying as the square root of energy above and below these

conduction band edges. So, this pictures of great use to us throughout this course and it

would sort of help gather some amount of intuition, you know it is a it is helpful to you

know visualize this very clearly.

So moving on so, what we have counted for now is the number of states available and

the electrons can now start occupying these states, ok. And, what we are trying to get at

ultimately  is  the  number  of  electrons  that  are  available  for  conduction  because,

ultimately we want to measure the current voltage characteristics. Now, we know the

number of states, but we now need to find out as to what the probability of occupancy of

those states are.
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So, the probability of finding an energy state,  so, which is basically our solutions to

Schrodinger a solution Schrodinger’s equation. So, if you have a state at some energy E,

there  is  a  certain  probability  that  this  state  is  occupied  with  an  electron  and  that

probability is defined by this variable; I mean or the symbol f of E. It depends it is a

function of energy. So, it depends upon the energy and we call it f of E.

So, what is f of E? So, since electrons are fermions which means that, these are particles

that obey the Pauli’s exclusion principle you find that f of E is defined by something

called as a Fermi Dirac distribution, ok. And it turns out that f of E is defined by this

function here which is 1 by 1 plus E to the power E minus E f by K T in this function that

you  see  your  K  is  your  Boltzmann’s  coefficient,  T  is  the  temperature  and  E  f  is

something called as the fermi level.

So, it is an energy level which has got a special implication in semiconductors and it is

called as the fermi level. So, it is a technical term and we will continue using this and

you will typically use the symbol E f to denote the fermi level. Now, what do you mean

by the fermi level? So, if you were to take this function ok, f of E and plot it here, ok. So,

I have energy on the y axis and I have f of E on the x axis.

So, at T equal to 0, what is this function it is going to be 1 by 1 plus E to the power E

minus E f by 0 ok. So, this means this is going to be a very large number, but depending

on whether E is greater than E f or E is less than E f. This number could be very largely



positive or it could be very largely negative, ok. So, suppose E is greater than E f ok. So,

E f is some energy level. So, for now, let us just mark it somewhere let us just call that E

f. So, this is the energy scale and let us say E is greater than E f which means that this

quantity is positive and as the temperature approaches 0. This number is a very large

positive number which starts heading towards infinity.

So, as T approaches 0, you have 1 by 1 plus a term approaching infinity ok. If E is

greater  than  E  f;  so  which  means  that  this  value  is  going  to  be  heading  towards  0

therefore, for all energies at T equal to 0, for all energies above E f, the value of the fermi

function or f of E is 0. So, you can see that this is going to be the fermi function it is got

a value of 0.

Now, the moment E becomes less than E f ok, you have 1 by 1 plus E to the power minus

a very large number, ok. So, this number starts heading towards infinity as T tends to 0.

So, this value now starts heading towards 1 because E to the power minus infinity is

going to be 0 and you have 1 by 1 which is 1.

So, therefore, for all values of energy less than E f at T equal to 0 kelvin, the function

takes a value f of E is equal to 1 and at E equal to E f. So, when you have E is equal to E

f, ok. So, when you have E equal to E f, the fermi function has got a value of 1 by 1 plus

E to the power 0 by 0. So, in some sense it is undefined so, we need to take limits. So, let

us say T is heading toward 0.

So, you have 1 by 1 plus E to the power 0 which is 1 and therefore, this function tends to

1 by 2, ok. So, at E equal to E f at T equal to 0, you have the function actually somehow

making the switch from the value of 1 to the value of 0. And therefore, you can say in the

limit  the value of this  function is  half,  ok.  So, this  is  the fermi function,  this  is  the

behavior of the fermi function at T equal to 0.

So, what does this say? Since f of E is the probability as to whether an energy state is

occupied by an electron on f of E equal to 1 implies that the electron definitely occupies

that state and f of E equals to 0 implies that the electron definitely does not occupy that

state. So, what this picture tells you is that, at T equal to 0, any state that is below E f has

got a guaranteed chance that an electron will occupy it. So, if an electron if a state exists

here, it is definitely going to be occupied by an electron and at T equal to 0.



What f of E tells you is that if a state exists above E f, it is definitely not going to be

occupied by an electron which means that the state is vacant or in other words that state

is definitely occupied by a hole ok. So, this is the meaning of f of E. Now, as temperature

increases,  ok,  so,  this  is  what  happens at  0,  as  T approaches  0 Kelvin,  right.  So,  T

approaching 0 Kelvin is T, T equal to 0 Kelvin is not possible, ok. That is, it is against

the laws of thermodynamics.

So, let us say, let us take a more realistic case where you have a temperature T 1 that is

greater than 0 ok.

(Refer Slide Time: 18:41)

So now, what happens to f of E. So, you will find that if you were to plot for some

temperature  T 1,  if  you were  to  plot  this  function,  you  will  find  that  it  is  got  this

particular shape. So, it is deviated from it is T equal to 0 shape and it is got a shape that

looks like this.

So, what does this say? As E goes much less than E f ok so, 1 by 1 plus E to the power E

minus E f becomes a significantly negative number, ok. So, I let us call it let us call it x

for all practical purposes, just for the sake of for the sake of arguments here. So, as x

tends to so, x is your E minus E f. So, as E becomes. So, as E becomes less than E f ok.

If E becomes less than E f x becomes a negative number.



And if you have an exponent of a very largely negative number, it is going to be much

less than 1 and therefore, this function tends to 1. So, at where as you head very far away

from E f and below E f, the firm value of the function heads towards 1 asymptotically

and equivalently as you had above E f and very far away from E f, ok. So, as you had go

to higher and higher energies, x is a positive number that is continuously increasing and

it this term dominates this term and you will find that 1 by a very large number tends to 0

and therefore, this function here starts heading towards 0.

(Refer Slide Time: 20:39)

But at E equal to E f at E equal to E f, your x is equal to 0 ok. So, x is equal to 0 and

which means that this term here is equal to 1 and therefore, at equal to E f the value of

the function is 1 by 2. So, irrespective of the temperature, you will find that when my E

is equal to E f the function takes a value of half or in other words the function crosses

this point this coordinate of the x coordinate being half this plot.

If you plot energy versus f of E, you will find that for any temperature you will always

the function will always cross this coordinate of half comma E f ok, that is E f as being

the energy and half being the probability. So, at temperature T 2, the function deviates

further, ok. It moves further away from the T equal to 0 condition and it sort of start

begins to smoothen out.

So, you will see that the occupancy probability above E f begins to increase and the

probability of non-occupancy below E f also begins to increase, ok. So, that is the nature



of f of E and this nature is very important ok. So, we have identified the number of states

defined by the density of states and what we are doing here is we are trying to find out

what the probability is that those states are occupied by an electron, ok.

So, let us look at some of the key properties of this f of this probability, ok ao, which is

called as the probability of occupancy of the electron defined by f of E.

(Refer Slide Time: 22:26)

So, what are the key points, ok. So, these are some key elements to remember. So, f of E

is the probability ok. Please do not mistake it for a density function. It is not a density

function, ok.

So, if it were to be a density function then f of E d E would have to be the probability

and which means that this summed over all the states should be equal to 1 which is

clearly not the case. So, please do not mistake it to be a density function f of E is the

probability.
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And, if it is a probability, what is the random variable? The random variable is as to are

the 2 conditions or the 2 states right, given an energy level is it occupied by an electron

or is it not occupied by an electron, ok.

So, these are the 2 possibilities it is like a coin toss with a head and tail being the 2

outcomes. So, here you have 2 outcomes which is given an energy level is that energy

level occupied by an electron. So, it is let us say occupied is one state and not occupied is

the other state and the probability that it is occupied is given by f of E.

So,  which  implies  that  if  f  of  E  is  the  probability  that  it  is  occupied,  what  is  the

probability that is not occupied? It has to be 1 minus f of E ok. Because the probability of

the summation of the probabilities of these 2 states occurring has to be equal to 1 it has

to be either this or that they cannot be a third option. So, so that is the second point

which is the random variable is the occupancy or non-occupancy.

Now, what is E f? E f is the fermi energy level as is the fermi level ok. So, it defines an

energy at which f of E takes a value of half and we already discussed that. So, if you look

at the value of this probability of occupancy, it takes a value of half at E equal to E f.

And we already saw that, the probability of non-occupancy that is given an energy state

at a level E, the probability that is occupied by an electron is f of E. And therefore, the

probability  is not occupied by an electron is 1 minus f of E which is what which is



simply saying that this is the probability that it  is occupied by a hole ok, which is a

vacancy.

So, f of E is the probability of probability that a state is occupied by an electron and 1

minus f of E is the probability that that state and at energy level e is occupied by a hole.

And then finally, if E minus E f ok. So, if this term is much larger than k T ok. So, I will

not say much larger. Let us say it is greater than 3 k T which is basically implying that

this value is much greater than 1.

So, if the sum of the denominator can be approximated to 1 by e to the power E minus E

f by K T, then this becomes the Boltzmann distribution ok. So, this is your Boltzmann

distribution which is simply saying that, as the energy goes up, the probability that you

will find an electron goes down exponentially. Now, if E minus E f is approaching values

of K T, you cannot what he say simplify this denominator and you need to take into

account the entire fermi function value.

Similarly if E minus E f is much less than k T ok so, this is this was the case when E

minus E f is much greater than k T if E minus E f is much less than K T, 1 minus f of E

which is  basically  the probability  of occupancy by a whole approach approaches the

Boltzmann distribution which says that the probability that a hole occupies an energy

level E goes down exponentially as E goes much less than E f ok. So, that is basically

these approximations.

And we will use these approximations quite a lot because it helps simplify a lot of the

mathematics  and the calculation now. So, this  is  all  we have to say about the fermi

function and the fermi level and the fermi distribution, but the. So, let me tell you a little

bit more, let me give you some intuition about this. So, very nice way to imagine it ok it

may not be the perfect way, but it is an intuitive way to imagine, it is to consider a bucket

of water, ok.

So, let  us say you have a bucket  and you have got some water  you fill  these water

molecules 1 by 1. All these water molecules are filled up and you have a water level that

is still this point. Now, suppose I ask you the question so let us say this is all the air and

that is the water as you see it. Now, suppose I ask you this question as to where is the air

water interface, very intuitively somebody might point out to this layer here.



But does this mean that there are no water molecules above this. What is the probability

that I will find a water molecule below this level at this level and above this level ok.

Suppose, I ask you this question if the temperature T is greater than 0, you will definitely

find some water molecules above this level. It is just that they are going to be much

sparser as compared to the number of water molecules I will find below this level, ok.

So, this level can be imagined to be what is called as the fermi level ok. It is the in some

sense, the highest energy level that could be occupied by all these species at T equal to 0

ok, where the probability of occupancy is still not 0 ok it is equal to half at equal to 0.

Above this level at some temperature T greater than 0, you will find that the distribution

of water molecules that is a concentration of water goes down exponentially. It is like the

Boltzmann’s distribution ok.

And below this, you have a much larger probability of finding water molecules and if

you imagine the surface ok, let us say these are the water molecules in the surface. You

can see that, it is you know it is shared between the air and water boundaries. So, you

will sort of imagine that to be your you know probability being half, ok. So, it is a very

hand wavy, but very useful analogy to think of what the fermi level is ok.

And we will come back to this bucket of water examples every once in a while. So now,

if this is the fermi level, then what do you mean by the density of states with regards to

this water bucket analogy? So, the best the best parallel to the density of states is the

shape of the bucket, ok.
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So, if you have a bucket that is shaped like that, you have a different density of states

distribution and the water molecules need to fill all these states and the fermi level set

sets itself at some particular point, ok.

On the other hand, if we have a bucket like this, it is got a very different density of states

and for the same number of molecules the fermi level will be located elsewhere. So, this

analogy cannot be used throughout I mean, it is just a very hand wavy visualization of

what we are talking about, but nevertheless, it is useful. So, that is the key element about

the fermi; fermi function.

Now, some of you might wonder as to where this f of E came about, ok.
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So, although it is not a part of this course, I can post some notes online, probably I will

give you a link to where you can find these notes and essentially f of E comes about by

finding out the best possible way to distribute say n electrons among s different states.

So, these are n identical particles distributed in say a set of empty say states or seats, ok.

So, that is, if you find the many methods to do it, the best possible way where you can

maximize or you know find the best possible options is what defines your f of E ok. So,

it is a bit of statistical mechanics, all right.
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So, what do we have? We have the number o-f states which is defined by the density of

states. So, if the density of states tells me how many states are there per unit energy per

unit volume and we have the probability that those states are occupied by an electron. So,

using  these  2,  we  can  now  begin  to  count  the  carriers,  ok.  So,  we  are  ultimately

interested in counting the number of electrons available for conduction.

Most particularly, if this is the conduction band edge and this is the valence band edge,

we are interested in the electrons in the conduction band and the holes in the valence

band. We are not so interested in the electrons in the valence band. There are many of

those because these are  all  trapped to these are  all  bound to all  the  different  silicon

atoms, ok. There are many of many electrons in the valence band and equivalently, there

are many holes in the conduction band it is largely empty.

So, we are not interested in the holes in the conduction band and the electrons in the

valence band. But, we are very interested in the electrons in the conduction band and the

holes in the valence band because,  these are the species that are going to you know

constitute my current through these devices and ultimately, I want to get to a point where

I can start to define my current-voltage characteristics and all these devices.

So, always remember, we are interested in the electrons in the conduction band for E

greater than E c and holes in the valence band; that is E less than E v. This is of interest

to us and we want to establish a method to count these, ok. So, how do we count, how do

we identify the number of electrons? So more particularly, the number of electrons per

unit volume so, number of electrons per unit volume which we will call as the electron

concentration, ok. It is not per unit area right now, it is per unit volume and the number

of holes per unit volume that we will call as the hole concentration.

So, how do we identify these 2 ok. So, if you ask yourself this question, what is the

number of electrons per unit volume which we will define by the symbol n of E lying

between E and E plus d E. So, I have 2 energy levels ok and this energy level is E that

energy level is E plus d E and we want to know how many electrons are present between

these 2 and we will call that as n of E. It is a function of energy. If this E changes, the n

will might change.

So, the answer is very clear. So, you need to first know how many states are there for the

electrons  to occupy ok. If  there are  no states,  there can be no electrons  because the



electrons have to have a state to occupy because these states are essentially the solutions

of Schrodinger’s equation. So, you need to identify the number of states per unit volume

per unit energy or let us say the number of states per unit volume between n E E plus d

E, which is nothing part the density of states in to the density of states is the number of

states per unit volume per unit energy.

But, since we are interested in E between the number of states between E and E plus d E,

so, this energy gap is has got a value d E. So, it is density of states into d E which the

number of states between E and E plus d E per unit volume. So, I know the count of the

number of states, but it does not mean that all these states are occupied by electrons.

Because, there is a certain probability that the electron will occupy these states and that

probability as we saw is defined by f of E.

So, f of E into the number of states between E and E plus d E is my electron count, that is

n of E. So, if you were to take a semiconductor, that is extremely clean ok which means

that there are no states in the band gap ok. there are 0 states in the band gap. And let us

say, I pick an energy level between E and E plus d E somewhere there at a temperature T

greater than 0.

And we ask the question as to how many electrons are present between E and E plus d E.

Well, the first answer is, the number of states that is the density of states into d E is 0 f of

E is not 0 because f of E could be taking a value that is you know nonzero. So, that is a

probability that an electron will occupy that energy level provided. There is a state for

the electron to occupy it, ok.

But, since ours band gap is very clean and there are 0 states, even though f of E is not 0,

the number of electrons to be found is 0. On the other hand, if let us say we want to find

the number of electrons in some energy level lying in the conduction band, ok.
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So, let us say that is E c so, that is my E c and I want to know the number of electrons

between E and E plus d E. So, what do I do? I need to identify the density of states into d

E. So, here I do have a density of state distribution and I know that it varies as the square

root of E minus E c is proportional to this.

So, we do have states. So, E the density of states into d E tells you the number of states

per unit volume in this region and f of E is the probability that these states are occupied

the probability is going to be low. But, it may not be 0 at T greater than 0 ok. At T equal

to 0, it is definitely 0 but at T greater than 0 this probability is non zero.

Therefore, you do have some probability a very small probability that these states are

occupied. And therefore, you can establish a carry account and it is these electrons that

are going to help you in providing a current through the device, all right. So, next, if you

ask the question what is the number of holes between E and E plus d E. So, which

means, I need to identify p of E which is the number of holes per unit volume between E

and E plus d E.

Then again, I get the density of states. I need to find the number of states available, that

is the density of states into d E into the probability that these states are not occupied, f of

E is the probability that states are occupied. But, the probability that the states are not

occupied is 1 minus f of E. And therefore, this is my count of the number of holes per



unit volume between E and E plus d E. So, this is a very useful relation to remember. It is

again, it is good to develop intuition with regards to these concepts, all right.
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So now, we are interested to find the current ok. And it is all the electrons above the

conduction band edge that are going to contribute to the current and all the holes below

the valence band edge that are going to contribute to the current. So, we are not only

interested in the number of electrons between some energy level E and E plus d E ok.

But instead, we are interested in the number of electrons from E c that is the band edge,

the conduction band edge, all the way up till infinite, ok. That is all the electrons present

in the conduction band, because, all these are going to aid my conduction.

So, how do I collect or count all the electrons above the conduction band edge? It is

straightforward. It is going to be the answer if obtained the previous example which is n

of E, but summed over all the different energy levels, right. So, this is n of E and I am

going to take a summation which is basically, I am going to take an integral from E c till

infinite of f of E into the number of states between E and E plus d E.

So, if I were to sum all these electrons present in all these little bands from E to E plus d

E, then, I will get my total number of electrons in the conduction band and if I make use

of the Boltzmann approximation and I perform this integral, you will end up with a term



that looks like this. After you apply the limits, we will find that the number of electrons

from E c till infinite turns out to be this value in the case of a 3D semiconductor.

So, you see firstly, it depends on E to the power minus E c minus E f ok. So, if I have my

E c here and if I have my E f here and let us say I have my E v here. This distance is

important and the further the fermi level moves away from E c, the smaller the number

of free electrons and that is clearly understood because, this is the probability ok. The

probability varies like this and if I were to move the fermi level away, the probability is

going to vary.

Because it is going to take a value of half at the fermi level so, my half will appear here.

Instead of a taking a value half there, it will take a value of half at a much lower value of

energy and it is going to take a much smaller probability of occupancy at the energy

levels  above E c.  So, as E c minus E f  increases,  if  that  has that gap increases,  my

electron count is going to start coming down ok. The free electron count is going to start

coming down.

Now, this  term here  is  a  constant,  ok.  Now, this  pre  factor  to  this  exponential  is  a

constant  m of  m E  star  is  the  effective  mass  of  the  electron,  k  is  the  Boltzmann’s

coefficient, T is the temperature, h is the Planck’s constant and that particular term is

typically denoted by a constant symbol ok. It is called N c which is the effective density

of states in the conduction band.

So, this is not the density of states, it is not the number of states per unit volume per unit

energy. It is the effective density of states which is basically the number of states per unit

volume in all energy is from E c to infinite, ok. So, it is analog goes to that measure.

Now, similarly, if you want to find the total number of holes in the valence band because

that is what is going to help me carry current, we find that the number of holes in the

valence band is the summation of all the holes from E between E and E plus d E. But

going from minus infinite to E v so, that is my E v that is my E c. To find the number of

electrons, I needed to find all the electrons sitting from here all the way till infinite and to

find the number of holes in the valence band, I am going to find all  the hole sitting

between E v and minus infinite.



So, I am going to integrate from minus infinite to E v 1 minus f of E. The density of

states in the valence band times dE is going to give me a measure that looks like this. So,

this is the total hole count in the valence band and what is that?
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So, just like in the case of electrons, I have my E v and I have my E f and I have my E c.

We found that  as this  gap increases  the number of  electrons  in  the conduction  band

decreases.

Because the probability is got a lot lower. Similarly, if this gap E f minus E v ok so, this

is E f minus E v begins to increase, the number of holes available in the valence band

will start to decrease once again; why because, 1 minus f of E will  start to get a lot

smaller if this gap starts increasing. So, and all this happens because f of E has to take a

value of half at E f. So, if I move E f around, I change the probability of occupancies in

the states above E c and below E v.

Now, just like we defined an effective density of states in the conduction band, we can

define an effective density of states in the valence band which is called as N v. So, the

number of holes available for conduction are the number of holes between minus infinite

to E v which is the effective density of states in the valence band which is essentially this

constant here times E to the power E v minus E f by K T. So, that is the way you count

the number of carriers available for conduction.


