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 So, let us get started with today’s lecture this would be on KL transforms. So, you have

seen at least two transformations as part of this course; one is the Fourier transforms and

the other is the Wavelet transforms, you we have gone into the detail of course, your z

transforms Laplace transforms and many other transforms that you have studied as part

of your electrical sciences courses. So, in today’s lecture we will see what is common

between these transforms and then we will delve into the KL transform Karhunen Loeve

transform.
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So, if you see the broad structure, right many transforms that we are familiar with have

been signal independent, this is a very important thing. Many transplants we are familiar

with having signal independent that is we have a broad or generic framework to handle

any signal  with some properties  associated  with them, example  convergence  etcetera

such that the transformation yields a, energy compaction b, perhaps better analysis or I

would say signal properties in the transformed domain.



So, a good example of energy compaction these wavelet us right you look you think

about wavelet us the compact energy and because of some compaction of energies which

is happening that is you look at the original band and then you split it into two bands,

right high pass and low pass and again perhaps within low pass you further decompose

into low pass and high pass and so on. You do this level  of decomposition as much as

you want so that you can have energy in the in the topmost sub band, right and that

basically  I  mean you have all  the energy concentrated in the region in the sub band

region that you want up to the level of resolution that you intend to right and that is

basically energy compaction and that leads to automatically to compression.

And, another example that we saw was analyzing the sinking properties in the transform

domain right. So, for example, if you look at wavelet us if I give you a 63 hertz versus

perhaps a 65 hertz you would give a certain emphasis to 63 hertz versus 65 hertz though

it is just 2 hertz separation they are build and compartmentalised in different sub bands

alright there is some sort of unequal resolution that we can make in place alright and this

gives us better analysis, it can also give a spike suppression etcetera etcetera.

So, therefore, signal properties can be better analyzed in the transform domain by using

the frequency domain tools like the Fourier transform etcetera, right and we have seen

such properties.  Now, one of the questions that we have to ask is there a framework

where the transformation depends upon the data right. So, this is sort of a philosophical

question to ask. So, one is a regular transformation I give you any signal I can compute

using  Fourier  that  is  a  single  independent  as  long  as  it  satisfies  certain  notions  of

convergence, right example you know it is absolutely integrable or square integrable we

have different notions we that we place for the signal right as long as it behaves is well

behaved within those notions of conversions then we can compute the transformation

and then we can analyze further, right.

Now, what  is  the  main  issue  with  data  independent  transform  sources  related  data

dependent transforms, right. If you think about data independent transform irrespective

of a signal as long as that satisfies certain properties we can do energy compaction we

can  compress  we  can  transform it  into  the  equivalent  domain  figure  out  what  it  is

required etcetera, but one of the questions that may come is if we were to maximally

compress in  some way in a  signal processing framework it  compression can also be

thought about from an information theoretic framework right there are entropy based



compression engines that is out of the scope of the current course, but if you think about

from signal processing perspective statistics of the signal should play a role for certain if

you were to look at certain properties of the signal in terms of compression etcetera and

that is the reason why people conceived data dependent transform transforms such as the

principal component analysis which is also the KL transform, ok.
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So, philosophically put. Is there a transform that can a yield energy compaction energy;

that means, you compact the energy into a set of few coefficients that you want, ok. Next

is decorrelate data correlations are good if you want to sense intelligence, right they are

bringing an intelligent machine. If there are correlations or patterns that are correlated

you can predict a good example is if you are gone through the course and you try to

correlate with the professors scheme of examinations you can predict what can come if

you  cannot  correlate  then  probably  you donate  you cannot  expect  what  the  type  of

questions can be right. So, this is I think is an important we need to decorrelate data we

would like  to  have unitary  transformations  because  it  eases  out  certain  properties  in

terms  of  simplifications  if  we  can.  So,  therefore,  we  bring  this  notion  of  unitary

unitariness  which  means  if  you  are  given  a  linear  transformation  A,  AA transposes

identity.

And, then this is very important it is data dependent; that means statistics of the data

must play a role, ok. If you pause these problems, I need a transformation and I would



make it  more specific  as a  linear  transformation because we like to play with linear

operators, you need a linear transformation that can do all the following that is it should

be  able  to  do  energy  compaction,  decorrelate  data,  maintain  unitariness  and  then  it

should  be  data  dependent.  So,  if  you  satisfied  all  these  things  then  we  have  a

transformation, right.

And, fortunately for us Kari Karhunen and Michel Loeve is a 1948 this is 1947 they

developed this notion of this is for K and this is L Kari Karhunen Loeve transforms,

named after the inventors. So, we will study the properties of KL transforms. I will study

the  properties  that  leads  to  KL transforms  set  up  the  problem in  the  framework  of

optimization that automatically leads us to the transform. So, I think it will be a two step

approach in the lecture. So, first we will study some properties and then we know the

answer to some extent and then we will post the right problem and then we will derive

the transformation from first principles, and it has a lot of applications PCA is a is a very

well known algorithm in machine learning and applications from search engines to many

things you can do with PCA, ok.
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 So, let us start with the following let us imagine vectors x belonging to R N right they

are column vectors N dimensional vectors and they are associated with some probability

density function, ok. So, to be precise they are column vectors.



Now, we can compute the covariance of x as follows. So, sigma x is the covariance

matrix of x which is expectation of x minus mu x times x minus mu x transpose ok. So,

this is a matrix right it is an N by 1 this is a 1 by N you have a N by N. So, this is a

covariance matrix. Now, suppose we consider a linear transformation of x by A let A be

some  linear  transformation  of  x  which  means  y  equals  a  times  x  right  familiar

transformation. So, this implies to take the expectation of y of this is expectation of A

times x which is basically this is mu y we will designate it as mu y which is a times mu x

right you can pull A outside because it is not stochastic expectation over the random

vector right, when you take expectation should look at the multi  domain multivariate

distributions right, because it is a vector it of several coordinates and you should look at

the multivariate density.

Now, sigma y is expectation of y it is a covariance you have to remove the mean right we

have to remove the bias and then we have to compute the expectation y minus mu y

times y minus mu y transposed this is what we need to compute.
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Now, if we plug this in y equals A x and we will simplify sigma y is expectation A x

minus A times mu x times A x minus A times mu x transposed. Now, we can pull A

outside here expectation x minus mu x times this is A into x minus mu x transpose the

whole thing transposes A B whole transposes B transpose times A transpose, right and we



can  write  this  as  x  minus  mu  x  transpose  times  A transpose  ok,  because  just  A B

transpose is B transpose A transpose we apply this property.

Now, I think this brace must be here this is A times sigma x times A transpose this is how

we would compute the covariance of y. So, we are slowly building what we need what

our goal is, right. So, we start with the following goals. So, what we may need one they

may want y to be decorrelated that is sigma y is a diagonal matrix say lambda that we

would not decorrelate the data; that means, look at one coordinate it is not having any

correlations with the other coordinate I mean you take expectation in the in the stochastic

sense.

Now, second, second property is we still need energy compaction that is place energy of

the signal non uniformly that is from high to low over these signal dimensions. So, what

do we mean? Suppose, data is such that I have let us say it is a 2 dimensional data energy

in x is 95 percent versus energy in y right if you take the some energy that has to be 100

percent, right if you look at all the coordinates if you look at the energy in each of the

coordinates that should be the overall energy in the system, but some of the coordinates

may have more energy than the rest and we need some way in which we can sort of have

a gradation in the energy over the coordinates, that is sort of the I would say an idea.

Now, you get these two points, right we have these two goals now and we want a linear

transformation right you can question that if you proceeded if you proceed with a non-

linear assumption your optimization will be according to what you started off with, but

often having a linear constraint helps us,. So, let us proceed further with this.
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Let psi be a unitary transformation matrix for goal one we can achieve diagonalization if

y minus mu y is linearly related to x minus mu x right. We can achieve diagonalization if

y minus mu y is linearly related to x minus mu x. So, suppose y minus mu y is some psi

inverse x minus mu x let us choose psi to comprise of eigenvectors of sigma x. So, it is in

a way I have given you the answer for this linear transformation it is basically stacking

all the Eigen vectors of the covariance matrix of x right, but we will arrive that this is

indeed  the  right  front  right  transformation  to  choose  with  the  set  of  optimization

constraints that we have,.

So, now if we assume this solution right then sigma x times psi is psi times lambda I call

this equation A why because of course, we can say sigma x times some say psi i is one

such vector right is basically lambda i times psi i this is your Eigen value equation for i

equals 1 2 3. So, on N till N right you have N coordinates when Eigen vectors and Eigen

values and this is the Eigen value equation and you stack all these lambda 1, lambda 2,

lambda 3 becomes a diagonal matrix of lambda right lambda is basically diag I express

lambda is diag lambda 1, lambda 2, lambda N, and then you can compute. Similarly, you

stack the corresponding Eigen vectors and you can get this.
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Now, sigma y is psi inverse sigma x times psi this is not too difficult to solve right I

mean all you have to write is write it in terms of expectation of y minus mu y times y

minus mu y transposed sort of vectors right. So, and you use this solution that y minus

mu y is psi inverse of x minus mu x right, you plug this here you will land up with

expectation of psi inverse x minus mu x x minus mu x transposed and then you have a

psi here right expectation is over this is basically psi inverse expectation of x minus mu x

x minus mu x transposed that is right. Put this just aside some steps right just follow the

math you will you will land up with this,.

Now, we are able to achieve our goal of forcing sigma y to be lambda by an appropriate

transformation A equals psi inverse right we can get a diagonal matrix I mean we can say

that if sigma y is going to be lambda we can say the sigma y is going to be lambda if A is

chosen to be psi inverse,. Now, let us we got a hint already that is you take the data x that

is  random  vectors  x,  pull  them  up,  compute  their  covariance  matrix  get  the  Eigen

decomposition for the covariance matrix stack all the Eigen vectors and that forms your

linear transformation, for mapping x to y and let us investigate the properties of y and we

should be able to have d correlation etcetera, etcetera ok. So, let us prove some basic

properties associated and then we will carefully delve into the rest.
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Property 1; for any real matrix A it is real and I also need to bring in the symmetric

property real and symmetric matrix A Eigen vectors or orthogonal if Eigen values are

distinct an interesting property right I give you a real symmetric matrix and I compute I

do the Eigen decomposition right and Eigen vectors are orthogonal if Eigen values are

distinct  and  why  do  you  have  to  bring  in  this  real  symmetric  matrix  what  is  the

connection think about the covariance matrix right expectation of x 1, x 2 is same as x 2,

x 1.

So, if  you start  transposing it  you will  see symmetry properties there unless you are

bringing any data dependent notions on the coordinates itself in some way that may not

give you that kind of structure that you want right normal conditions expectation of x 1,

x 2 same as expectation of x 2, x 1. So, let us prove this property and that is the link

where we are reading this is more a general notion to state this property, but keep in

mind that this matrix a you have imagine the covariance matrix because that is our goal

that  is  how we are proceeding ok.  So,  let  us start  with the proof  consider  the inner

product of x with y for vectors x and y that are eigenvectors. Now, since A is symmetric

equals A transposed now, in product of A x with y can be written as A x transpose y right.

So, dot product and this is going to be x transpose A transpose y let me call the equation-

I.



Now, equation- I can be seen slightly differently right. So, you can see this as x you have

put in these vectors here x dotted with A transpose y right. So, by our definition you

transpose this  and multiply with this right that is what we did here we took A x we

transposed it you may multiplied it y and we got this right I can interpret it like this x

with A transpose y, but this is symmetric matrix A transpose equal say I can write it as x

with A y right. So, A x with y is same as x with A y if A is a symmetric matrix ok. So, let

us call this equation II.
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Let A x equals lambda x and A y is some mu y now A x with y is basically lambda

because A x is lambda x right I use A property that I can pull the scalar out lambda inner

product of x with y similarly I have x with A y this is mu times I pull the A y is basically

lambda mu y. So, I pull the mu scalar outside this is again x with y right, I have set of

equations-III.

Now, they both are equal right; that means, if I take the if I subtract these two equations

inside 3 that has to be 0, but lambda is not equal to mu because we assume that they are

distinct this implies inner product of x with y has to be 0 which means from geometric

sense x is  orthogonal  to y first  an interesting result  it  says that  the Eigenvectors  are

orthogonal and you know what is the deeper implication of this result because they can

form  a  basis  right  and  that  is  what  people  think  about  it  is  Eigen  basis  from  that

perspective,.
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Now, let us check if the energy conservation holds this is very very important because if

you  cannot  satisfy  the  energy  conservation  property  then  there  is  some  loss  in  the

transformation right and it be cannot recovered now the energy in x is.

Basically, the covariance which is given by expectation of x minus mu x transpose times

x minus mu x.  Now, let  us  consider  energy in  y right  energy in  y is  E y which is

expectation  of  y  minus mu y transpose times  y minus mu y right  with y equals  psi

inverse x, where psi inverse is some matrix such that psi inverse equals psi transpose it

says property satisfied. Now, E y is expectation of x minus mu x transpose psi inverse

transpose psi inverse times x minus mu x and observe this because we want to bring in

the unitariness right A A transpose is 1. So, your A is like psi inverse and here transpose

is like your psi inverse transpose or your a is psi inverse and then you know a transpose

is psi inverse transpose because of this is unitary this is identity and we have seen these

unitariness in filter banks as well right.

So, therefore, E y is expectation of x minus mu x transpose times x minus mu x and this

is basically E x and the implication of the statement is energy is conserved. So, this is a

very  important  property  that  you  have  to  bear  in  mind  when  you  do  these

transformations,  you  do  not  want  to  lose  the  original  energy  in  the  signal  in  the

transformation the energy has to be preserved, but you decide what components. You

want to throw them off right you decide which of the how much energy you want to



retain  and  depending  upon  your  threshold  you  decide  what  you  can  do  with  the

representation. So, this picture should be very clear in your mind.
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Now,  with  some  of  these  properties  that  we  saw  they  will  motivate  towards  the

derivation of the transformation. Suppose we want to compact this is very very important

compact energy within the first Q components of y can we construct a transformation

that does this; that means, I take some transformation of x and I get this vector y and I

will observe the energy in y I want to compact it within the first Q components of y some

transformation is happening such that say let us say 95. So, let us say the dimension is 10

the first 5 components has 95 percent energy and the rest has 5 say suppose, I want to

realize such a kind of transformation can I do that with the given properties and you've

already  seen  how  statistics  is  playing  a  role  here  because  they  are  bringing  in  the

covariance  matrices  of  the  data.  So,  and  therefore,  we  are  bringing  data  dependent

statistics right we have to apply other properties and motivate this problem.

Now, to be more precise suppose A is A linear transform such that y equals A x let us

assume a such that I have a stack of all these vectors where a u is a n by 1 column vector

say suppose. Now, let us deal with Hermitian because they can be complex valued. So,

therefore, we can think about Hermitians now a Hermitian. So, instead of real symmetric

matrix I could you know instead of real I can bring in perhaps complex and when I bring



in  complex  then  you  have  to  be  careful  when  you  do  the  transposition  your  take

conjugate transpose, right that is only subtle detail.

So,  just  to  be mindful  about.  So,  now, a Hermitian  is  this  matrix  which is  a naught

conjugate a 1 conjugate dot dot dot a n minus 1 conjugate ok.
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Now, to consider energy in the first Q components of y let us null out k greater than or

equal to Q components say greater than Q because you want to retain the first Q and then

anything post Q you pull null out components in a and a Hermitian, ok. Now, let us form

A Q by reading the first Q components and this is a naught a one dot dot N dot A Q

minus 1 0 0 0 transposed and A Q Hermitian is this matrix which is a naught conjugate a

1 conjugated dot dot dot A Q minus 1 conjugated null.

Now, what we need is we need to maximize the energy within the first Q components

which means we want to look at the expectation of x minus mu x Hermitian with A Q

Hermitian A Q times x minus mu x subject to the following conditions which is a k

conjugate  transpose  a  k  is  1  it  is  ortho  normal  conditions  that  is  the  inner  product

between two Eigenvectors are not the same is 0 and when it is the same it is normalized

to 1 right otherwise I would have had if I considered if I did null everything then I would

have just a full a right in this if I would have I would have I would have had a full a here

right.



Since, I am running out components k greater than Q right then I have I retain the first Q

components and therefore, this is the energy in the first Q components and I want to

figure out some transformations that can maximize the energy in the first Q components

that is maximized E y of Q which is given by this quantity subject to these conditions

subject to these conditions. So, now, it is not too difficult we can take and formulate

these into the Lagrange multiplier framework.
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Let us see how we can do this now, J is maximized a k conjugate k equals 0 to Q minus 1

of E y of Q subject to the condition this is 0. Let us you bring in the condition that a k

conjugate transpose a k equals 1 and that is the equation there is a associated parameter

lambda k for the Lagrangian. So, you have all such equations, Q equations for k equals 0

1 2 3. So, on till Q minus 1 and you said that within the constraint set up.

So, now to simplify let us compute some terms and one of them is A Q Hermitian times

A Q. So, this is basically a naught conjugate a 1 conjugate dot dot dot a Q minus 1

conjugate  nulls  times  a  naught  transposed  a  1  transposed  dot  dot  dot  a  Q minus  1

transposed and then everything is null, ok. This can be compactly written in the form of a

summation this is k equals 0 to Q minus 1 a k conjugate times a k transposed, ok. The

moment you understand how to set this right the rest is routine algebra I mean you just

have to get the right set up formulated.
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Now,  J  equals  maximization  where  all  a  k  conjugates  k  equals  0  to  Q  minus  1

expectation of x minus mu x Hermitian summation. So, a Q Hermitian times a Q can be

written with the summation k equals 0 to Q minus 1 a k conjugate a k transpose times x

minus mu x right and then subject this to the following constraints correct I did this looks

more messy then what we started off of it, but of course, sometimes doing a lot of messy

things will give you good results we can simplify things carefully it looks a very ugly

equation, but you can simplify this.

Now, I call this equation – 1. Let us rearrange – 1 a bit let us rearrange this a little bit. So,

to rearrange this we need to consider x minus mu x because the ugly term is one which is

in this expectation right I consider x minus mu x Hermitian times A Q Hermitian A Q

times x minus mu x and I said this could be written as summation k equals 0 to Q minus

1 x minus mu x times there is a Hermitian here a k conjugate times a k transposed times

x minus mu x.

Now, this is very important to just recognize the fact that this is a scalar and this is a

scalar and you are taking two scalars and you are multiplying them and you are basically

adding them. So, therefore, if I can reverse the scalars; so what I can do is the following.



(Refer Slide Time: 53:19)

I can rewrite this as summation k equals 0 to Q minus 1 a k transpose x minus mu x

times x minus mu x Hermitian times a k conjugate.

Say, if a routine algebra will not help you somewhere you should pause a little bit and

think what if you can simplify this further and the simplification will help us because we

can write J I would call this as I said this is earlier was equation one let us call this

equation – 2. Using – 2 in – 1 we can write J as maximize overall a k conjugates k equals

0 to Q minus 1 expectation I have to bring this expectation out summation k equals 0 to

Q minus 1 I am just dropping this directly drop into here a k transposed x minus mu x

times x minus mu x Hermitian a k conjugate, ok. I want to maximize this subject to these

constraints.  It  looks  still  messy,  but  we  can  simplify  because  you  can  pull  this

expectation inside expectation is a linear operator right that property we will apply.
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Now, J let us simplify – 3. So, by doing so what we land up is now J can be written in the

form maximize overall a k conjugates k equals 0 to Q minus one summation k equals 0

to Q minus 1 a k transpose expectation is pulling inside. So, the expectation of x minus

mu x Hermitian x minus that is become sigma x covariance matrix times a k conjugate

subject to these constraints. This is now easy for us right, where sigma x is expectation of

x minus mu x times x minus mu x Hermitian right this is straightforward.

Now, what we do is I have called this 4 now to solve for equation – 4. So, you want to

maximize  something subject  to  this  you set  the  partial  derivative  of  this  cost  j  with

respect to a k conjugate to 0 for all k equals 0 one dot dot dot Q minus 1 right, you do

this and you apply the properties of the vector differentiation that if you have two vectors

y and x d by dx y transpose x is  basically  y. Now, using this  property dJ by d a  k

conjugate equal 0 implies sigma x with a k minus lambda a k equals 0 and this is our

Eigen these are Eigen value equation.

So, all we did is we post the solution to the linear transformation in the framework of

optimization  subject  to certain  constraints.  This  is  basically  a  constraint  optimization

problem and then we land up with the Eigen value equation. So, before we started off

with the optimization we never assumed that they are they are Eigen they are they are 0

or that they are Eigen vectors etcetera that satisfies this equation we assume that they

wanted we wanted them to be orthogonal we wanted. So, that it forms an easy way to



represent  in the form of  a  basis  if  we brought  in  the orthonormality  constraints  and

subjected the energy to be maximized over the first Q components and we did this we

land up with the Eigen value equation. So, it is to choose Eigen vectors of the covariance

of x and then work out backwards to get to our transformation.

So,  I  really  do  not  know how Karhunen  and  Loeve  thought  about  in  their  original

thought process of thinking through this problem did they have an intuition that they

have to look into the Eigen basis or they just posted it in an algebraic framework and

solved this I do not know how they had they had, but I think remarkably there should

have been some clear intuition behind going about in a very structured way to solve this

problem, right.

So,  this  concludes  the  KL  transformation  we  will  now  see  the  application  of  KL

transformation to dimensionality reduction, ok. So, we will stop here.


