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Let us today discuss some notions and properties on convergence of functions. So, we

discussed the properties of what continuity means in what uniform continuous functions

are.  Let  us  extend  this  notion  to  convergence  and  then  connect  convergence  with

continuity, ok.

So, before we delve into the details why this is useful because since we are studying

Fourier  series  some of  the  properties  we want  acclimatize  ourselves  with notions  of

convergence. So, keeping this in mind let us get started.

(Refer Slide Time: 00:57)

So, first is point wise convergence. A sequence of functions you can interchangeably use

functions you can use signals defined on a set some S converges point wise to a function

f defined on S if limit as n goes to infinity f n of x equals f of x holds for all x belonging

to this set.



So,  we will  go a little  deeper  into what  this  definition  means right.  So,  you have a

sequence of functions that are defined on a set S and that converges point wise to a

function f defined on S if this condition holds.
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Now, in other words what this means is f n converges point wise to f on this set S, if for

every x belonging to this set S and for every epsilon greater than 0 there exists some

capital  N that belongs to the set of natural numbers. This script n is basically  set of

natural numbers such that for every small n which is greater than or equal to capital N

the absolute value of f suffix n small nx minus f of x is less than epsilon and here N,

capital N depends on both epsilon and x.

So, f n there is a sequence of functions converges point wise to some function on that set

S if we pick some x belonging to that set S and then for every epsilon that is greater than

0 there exists some capital N a natural number such that for every small n greater than or

equal to capital N this function is within epsilon of the limiting function right f n x minus

f of x absolute value is less than epsilon. So, n here depends upon both epsilon and x. So,

pick the initial point x pick epsilon the capital N depends upon both epsilon and x.
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Now, let us see an example. Consider the graph of a continuous function f of x equals x

power n over this interval minus 1 to plus 1 this is semi open I mean it says open on the

origin on the negative side and it is closed from the positive side 1 is included and minus

1 is not included. So on this set that is over the semi open interval minus 1 to 1 f of x

equals 0 for minus 1 less than x less than 1 and 1 when x equal to 1 right, as n goes to

infinity because these are bounded between minus 1 and one 1 minus 1 and plus 1 not

included in this range basically decays to 0 and then when x equals 1 because 1 is part of

the set 1 power n is basically 1. 

Now, if you observe this function f of x the limiting function right I mean this should be

if nx here, f n x is x power n. Now, if you observe the limiting function right the limiting

function that is f of x is discontinuous and this was part of your homework exercise that

you know if you have a jump like this right it is a discontinuous function I gave you a

homework exercise last time and this is basically this continuous function. So, what it

implies is the point wise limit of a continuous function need not be continuous right, we

may start with a continuous function like f n x which is x power n and then if we look at

the limiting value of this function this function need not be continuous.

So, there are many pathological cases that you can see with point wise limits if you look

at  the  point  wise  limit  of  a  sequence  of  differentiable  functions  they  need  not  be



differentiable. Similarly the point wise limit of a sequence of integrable functions need

not be integral, right.
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Another example would help us here to understand what we are talking about with these

limits.  Consider  a  sequence  of  piecewise  linear  functions  and  these  are  called  tent

functions because I will sketch this graph how they look.

So, this is x this is you can call a triangular function retained function because it looks

like a tent here this is 1 upon n, this is 2 upon n and this is n, this is f and x, and it is

piecewise linear as you can observe is an up ramp and this is a down ramp. So, you can

describe this function as n square x in the interval 0 less than or equal to x less than 1

upon n, it is 2 n minus n square x in the interval 1 upon n less than or equal to x less than

or equal to 2 upon n and it is 0 for 2 upon n less than or equal to x less than or equal to 1.

So, now, let us investigate into how f n of x dives point wise over the interval 0 to 1, ok.

So, let us examine, let us examine if f n of x goes to 0 point wise on the interval 0 to 1 it

is basically closed on both sides. Now, if x belongs to this semi closed interval then f n of

x equals 0 for all x greater than 2 upon n because you can choose your n and x depending

on n such that this is a 0 function. If x equals 0 f n of 0 equals 0 for all n because you

have n square x you plug x equals 0 then for all such n this is basically 0 therefore, this

function f n of x goes to the 0 function point wise over this interval 0 to 1.



Now, we  have  to  investigate  the  following.  Observe  the  look  at  the  integral  of  the

function f n of x and look at the limit of the integral of this function and look at the

integral of the limiting function and see if what we can infer from these two cases. So,

one thing that you need to observe integral from 0 to 1 f n of x, dx equals 1 for all n this

is because you are looking at the area of the tenth function here which is half times the

base is 2 upon n times the height is n right and this evaluates to 1. Now, the limit as n

goes to infinity of the integral of this function this is basically 1. So, 1 is basically limit

of limit as n goes to infinity integral of this function because this integral is 1, this is let

us examine if it is equal or not equal.

Now, consider the integral of the limit function the limiting function as we discussed

earlier is the 0 function because it goes to 0 point wise. So, therefore, if you integrate the

0 is basically which is 0. Therefore, these two limits are not same. So, therefore, the limit

of the integral of this function is not equal to the integral of the limiting function. So, this

is an important observation that one might make mind while dealing with point wise

limits. So, you may wonder if point wise limits are or anything useful at this stage, ok. 
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There  is  a  useful  notion  called  uniform  convergence,  and  let  us  discuss  uniform

convergence  a  sequence  functions  f  n  defined  on  a  set  S  converges  uniformly  to  a

function f if for every epsilon greater than 0. There exists some number capital N whose

belonging to the set of natural numbers such that for small n greater than or equal to



capital  N absolute value of f n of x minus f of x is less than epsilon holds for all x

belonging to this set S. So, you have to look at the order here it is very important, which

means for every epsilon greater than 0 there exists some capital N belonging to the set of

natural numbers such that for every small n greater than or equal to capital N and for

every x belonging to this set S absolute value of f n of x minus f of x is strictly less than

epsilon.

That  is  capital  N  depends  on  epsilon,  but  not  on  the  initial  point,  x  this  is  a  very

important  difference  when  we  think  about  uniform  convergence  versus  point  wise

convergence. That means, for point wise convergence this function is bounded within

epsilon and his  bound depends;  that  means,  for every point  x  and a  given tolerance

epsilon you can you can figure out some integer capital or some natural number n which

can satisfy this condition. But if capital N depends only on the tolerance epsilon and not

on  the  initial  point  it  is  very  important  and  not  on  the  point  then  it  is  uniform

convergence and this is a very important idea and we will see this quite often very useful

for us. 
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So, we have a note here it is very important if f n converges to f uniformly on S then f n

converges to f point wise as well and it is not the other way around. And one of the

reasons for studying uniform convergence is basically to study if continuity is inherited

from a  sequence  of  functions  you  might  be  given  a  sequence  of  functions  that  are



continuous and you want to look at a functional series and then you want to see if that

helps to you know if there is uniform convergence. And if there is uniform convergence

then it implies continuity and is a very important thing and continuous functions are very

useful particularly when we deal with certain aspects in the Fourier series. So, we will

prove this result as we go through later part of this lecture, but let us revisit quickly an

example. 

Let us examine if the sequence of functions f n given by say nx square plus 1 upon an x

plus 1 is uniformly convergent over the interval 1 comma 3 this is basically the close

interval 1 and 3 are included as part of the interval. So, first let us take the point wise

limit, ok. Now, limit as n goes to infinity of nx square plus 1 upon nx plus 1 equals limit

as n goes to infinity I just pull the n outside which is basically x square plus 1 upon n

divided by x plus 1 upon n and this is basically x, right. So, that is f n converges to x

point wise over the interval 1 comma 3 right, it basically heads to this ramp function

defined over 1 comma 3.
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Now, let us examine uniform convergence ok. For this let us consider the absolute value

of f n of x minus this limiting function f of x which is f n x minus x, right. So, plug in f n

x we get nx square plus 1 upon nx plus 1 minus x which is basically absolute value of 1

minus x. So, just multiply nx plus 1 with x and then you cancel out nx square. So, you

get 1 minus x upon nx plus 1 absolute value and then x is positive. So, therefore, the



denominator we can say it is an x plus 1 and this is 1 plus mod x this is basically strictly

less than or equal to because I would like to say this is mod of 1 minus x is definitely

upper bounded by 1 plus mod x right I take the positive quantity here. So, this is true.

So,  now, over  this  interval  1  comma 3 1 plus  mod x upon nx plus  1 can  be upper

bounded to 4 upon n plus 1. I mean if I want this to be maximized the numerator should

be more and the denominator should be less. So, the denominator has to be less I choose

x to be the lesser value because this is a ramp I choose x equals 1. So, I get n plus 1 and

the numerator has to be maximum so therefore, I choose you know mod x x to be 3 here,

so therefore, I get 4 in the numerator and the denominator is n plus 1 right. This is for all

x belonging to 1 comma 3 you have gotten rid of the x then I compute this quantity.
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So, now, what it means is if epsilon is greater than 0 some positive quantity chosen.

There exists some number capital N which is a natural number such that for all small n

greater than or equal to capital N 4 upon n plus 1 is strictly less than epsilon. Which

means for every small n greater than or equal to capital N absolute value of f n of x

minus f of x is strictly less than epsilon this is over all points belonging to the interval 1

comma 3 this proves uniform convergence. 

Now, why do we care upon these ideas in an analysis, right?
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So, let us see the connection in some applications. So, we know that the Fourier series

for a 2 pi periodic function is given by a dc term plus the even the cosine and the sin

harmonics. Now, in functional series form the above can be written as summa k equals 0

to infinity summation S k of x. 

Now, this if you write it in a limiting form is limit capital N going to infinity summation

S k of x k equals 0 to capital N that is I take a partial sum from 0 to capital N, I sum and

then I take the limit and you see you ask questions if the limit exists right the question is

here if limit exists. And for different values of x, I can have different limits right I mean

it is also obvious that different values of x can give different limits and this is exactly

what you are sort of dealing with in the notions of our conversions, and does it converge

to some function, and is it  point wise conversions or uniform conversions and this is

there we are sort of alluding towards right. We will discuss all these things in detail when

we delve into Fourier series, but I am sort of setting up a basic background into basically

the notions of convergence as part of this background.
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Now, before we go further let us recall the basic definitions of supremum and infimum.

You might  have done this  in  your  basic  math,  but  we will  just  recall  this  definition

because we will use this definition subsequently. Let S be a set which is contained in R

the supremum of S denoted by sup S is the smallest number a belonging to the set of real

numbers such that x is less than or equal to small a for all x belonging to the set S pick an

x belonging to this set S which is contained in R and x is less than or equal to a.

Now, supremum of S in the set form is basically minimum over all a belonging to the set

of reals such that x is less than or equal to a for every x belonging to the set S right. So,

similar to the supremum we have something called the infimum as well I think you can

see the connection.
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Now, similarly infimum of S is the largest number b belonging to the set of reals such

that I am just flipping it x is greater than or equal to b for all x belonging to the set S. So,

infimum of S is basically maximum over all b belonging to R set of reals such that x is

greater than or equal to b for every x belonging to the set S.

So, pick an x belonging to the set S right and I have an x, I have a b such that b is greater

than or equal to x and b belongs to are not necessarily belonging to the set S it could

belong to the set S or it may it need not belong to the set S, but b belongs to R. 
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Now, with this let us get slightly a little more into depth here using these notations that

we already described. So, let us define for a real valued function on a non-empty set

denoted by S the supremum on these set S given by norm of f on the set S is basically

supremum x belonging to the set S absolute value of f of x ok.

Now, if f is a bounded function on S then supremum over x belonging to S absolute

value of x is basically supremum if you write this in this form absolute value of f of x

such that  x belongs to  S.  And this  if  f  is  a bounded function on the set  S then this

supremum exists and you know we have to observed that mod f of x is less than or equal

to the supremum of this function on the set S for every x belonging to S and means

values that mod f will take is very close to the supremum that is what it means, ok.

So,  with  this  we  can  slightly  think  about  revisit,  revisit  revisiting  the  uniform

convergence and let us check if uniform convergence implies point wise convergence. 
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let  us check this  I  think I  made a  note that  uniform convergence implies  point  wise

convergence  let  us  see  this.  So,  from  the  definition  that  we  have  for  uniform

convergence; that means, the absolute value of f of x, if f n of x minus f of x is within

epsilon and that does not it and you can choose some number capital N that does not

depend on x, but on epsilon n depends only on epsilon it does not depend on the initial

point right. So, absolute value of f n x minus f of x is less than or equal to the supremum

for all x belonging to this set S absolute value of f n of x minus f of x which is basically



in our notation f n minus f on this set S. So, that f n heads to f uniformly on S as n goes

to infinity.

So,  this  implies  absolute  value  of  f  n  of  x  minus  f  of  x  this  heads  to  0 for  each  x

belonging to S, this is very important for every x pick in x for each x this f n x minus f of

x absolute value heads to 0 right this implies f n heads to f as n goes to infinity point

wise on S. So, uniform convergence implies point wise convergence, but point wise may

not imply uniform convergence. 

Now, there is a link between uniform convergence and continuity and let us establish this

result via a theorem. 
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So, I will state the theorem and I will also prove this result. Suppose f n x is a sequence

of continuous functions on an interval S suppose f n of x converges uniformly to f of x

on S. Then the limit  function f of x is also continuous this  is a very important  very

important theorem I have a sequence of continuous functions defined on an interval S

and I know that f n of x converges uniformly to f of x on that interval then the limit

function is also continuous a very powerful statement. So, if it is not continuous then

what are the implications right, I mean it the convergence of a point of discontinuity

would have to be invoked and all these subtle notions have to be really revisited. So,

therefore, this uniform convergence is a very powerful, powerful idea.



Now, let us try to establish the proof of this result, ok. So, we need to establish that f of x

heads to f of a when x heads to a. So, when x heads to a I want establish that f of x goes

to f of a for every x and a belonging to this interval ok.
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Now, let us start with let us start with absolute value of f of x minus f of a. Now, for any

n greater than or equal to 0 that is n equals 0 1 2 dot dot dot absolute value of f of x

minus f of a can be written as absolute value of f of x minus f n of x plus I add and

subtract f n of x and f n of a very conveniently. And I think if you are seeing the trick

here basically you can see that you can invoke triangle inequality for this for this term

that I have written here right. So, what I have done is f of x minus a I add and subtract f n

x and f n a.

Now, invoking triangle inequality I have this is less than or equal to absolute value of f

of x minus f n of x plus absolute value of f n of x and f n of a plus absolute value of f n

of a minus f of a. But now, I can bound f of x minus f n of x absolute value this is

basically the superior norm of f minus f n same thing holds for this term as well.
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So, I can conveniently state f of x minus f of a is less than or equal to 2 times the norm of

f minus f n soup norm absolute value of f n of a minus f of a because mod f of x minus f

n of x is less than or equal to norm if minus f n is an absolute value of f of a minus f n of

a is less than or equal to f minus f n superior supremum of f minus f n. Now, we are

seeing the trick here.

Now, we choose a positive number epsilon which is greater than 0 which is arbitrarily

small such that f minus f n heads to 0 as n goes to infinity. Therefore, there exists some

natural  number  n  greater  than  0  for  which  this  norm  f  n  minus  f,  I  mean  I  am

interchangeably using f n minus f and f minus f n it is basically the same two superior

supermom is less than some epsilon by 3. So, let us assume that this is some epsilon by 3

for every small n greater than or equal to capital N ok. Then choose and fix that small n

say n equal to capital N and then which ensures that this is less than epsilon upon 3.
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Now, here is a important part if suffix capital N of x is continuous because we said all of

these are continuous functions and there exist some small n which is equal to capital N in

this that fits this bill and gives you f suffix capital N of x is continuous. Now, this is

continuous, so for any choice of epsilon which is greater than 0 there is an interval center

around the point a, so that absolute value of f suffix capital N of x minus f suffix capital

N of a is less than epsilon upon 3 whenever x belongs to that interval. This interval is not

necessarily yes. There exists some interval because it because we want a no continuity

here right there exists some interval that is centered around a such that this is holding

true that is absolute value of f n of x minus f n of a is within epsilon upon 3.

So, formally since f suffix capital N of x heads to f suffix capital N of a for x tending to a

for every epsilon which is greater than 0 there is a corresponding delta which is greater

than 0. So, that absolute value of f n of x minus f n of a is strictly less than epsilon upon

3 whenever mod x minus a is less than delta, right.
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So, thus absolute value of f of x minus f of a is less than or equal to 2 times the superior

of f minus f n plus absolute value of f n of x minus f n of a this is less than or equal to 2

times this quantity is epsilon upon 3 and this is also epsilon upon 3 therefore, this is

equal to epsilon for all mod x minus a less than delta. 

So, therefore, this implies f of x heads to f of a as x tends to a which means f of x is

continuous.  So,  this  is  a  very very  important  relationship  because  if  you consider  a

sequence  of  functions  and these  functions  are  continuous  and  then  there  is  uniform

convergence then it implies that the limit function is continuous. So, this also gives us an

idea for a quick test towards uniform convergence. 
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So, if the sequence of functions f n are continuous then f n and f n converges point wise

to f of x however, if the limit function f of x is not continuous implies f n x does not

converge  uniformly to  f  of  x  this  is  a  very important  quick test.  So,  I  considered  a

sequence of continuous functions and I assume f n of x small n of x converges point wise

to f of x; that means, each individual function converges point wise. However, if the limit

function is not limiting function is not continuous then the sequence does not converge

uniformly to f of x and this is a very useful result when we have to touch upon subtle

aspects in the convergence of the Fourier series.
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I  will  conclude with a theorem, another theorem. Suppose f n of x is a sequence of

continuous functions which converges uniformly to a continuous function f of x on a

bounded interval this is a small twist here it is a bounded interval. Let us suppose it is the

closed interval a to b we have limit as n goes to infinity integral a to b, f n of x dx is

integral from a to b limit n goes to infinity f n of x dx which is basically the integral from

a to b of the limiting function f of x.

Recall in one of the earlier examples when I took the integral of a continuous function

and took the limit of that versus taking the limit of the function and then integrating it

there was a case when they were not the same right we looked into that example right

and that was this tenth function. So, now, and we saw the issues there, right. So, now, we

will see under what conditions that we can take the limit of the integral as the same as

the integral of the limit right and that happens when there is uniform convergence over a

bounded interval. So, we will we will prove this result carefully. 
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So,  consider  the norm I  mean absolute  value  of  this  quantity  which  is  basically  the

integral of the limit  minus the integral of the sequence.  So, this is basically absolute

value of f n of x minus f of x dx. I just wrote the integral sign before and I just took f n of

x minus f of x.

Now, this quantity here is certainly less than or equal to integral a to b absolute value of f

n of x minus f of x dx absolute, but I think I have to be careful here, I have to put the dx



outside. So, basically I take this deviation I integrate it and then I take the mod this is

definitely less than or equal to if  I  did absolute  first  and then I  integrate  it  over the

interval a to b that is what it means right. And this because there is uniform convergence

I can write this as the integral  from a to b. The supremum exists and I can pull  the

supremum outside and this is basically the integral over this interval right because this is

just  one quantity which is maximum over all  x belonging to that set,  right.  So, or x

belonging to R and this is a subset of R.

Now, I can I can get the super supremum outside this is just  the integral  and this is

bounded. So, therefore, it is f n minus f times b minus a and this hits 0 as n goes to

infinity and this proves this result right. I mean this is this norm basically heads to 0 as n

goes to infinity because of uniform convergence and therefore, if you take the limit of the

integral of this take the step is a function in the sequence integrate it look at the limit that

is the same as the integral over the limiting function and this is a very important result

and this holds for uniform conversions. So, if you look at a sequence of functions which

uniformly  converge  to  a  limiting  function  over  a  bounded interval  then  limit  of  the

integral of the sequence is basically integral of the limit function ok, and that is basically

equivalent is equal to the integral of the limiting function over that interval is a very very

important result.

So, with this we have sort of given a basic background into the notions of convergence

and the implication of uniform convergence to a limit function which is continuous. And

these subtleties we will we will see when we discuss the Fourier series summation of the

for; I mean I mean if I look at the Fourier series does the limit converge. And if the limit

converges to what does this limit converge to and if there is a discontinuity point then

what is the limit and some of these subtle aspects have to be dealt with when you deal

with Fourier series and for this some of the notions of the convergence of the functional

series is very very important ok.

So, a lot of other details will be dealt in functional analysis or if you graduate course in

an analysis all these would be covered. So, I am giving you basically a background into

this, into these aspects because you will require this in signal processing.

So, we will end this lecture here.


