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So, let us get started with an Introduction to wavelet us. We studied filter banks and filter

bank theory is intricately connected to the wavelet transform. And basically I will start

with  the  motivation  for  wavelet  us  we  will  study  the  properties  of  wavelet  us

decompositions etcetera. And, then towards the end I will link the wavelet transformation

to filter banks and then you will see the connection to multi rate signal processing and

wavelet  transforms  and  how  one  can  think  about  these  2  as  a  sort  of  one  is  an

engineering way of arriving at filter banks and there is a mathematical way of defining

this object there is a called a wavelet.

And  the  scaling  function  and  how  one  can  think  about  basically  realizing  these

operations these transformations as filter banks and then basically linking the filter banks

to wavelet us we will see that towards the very end, but before we get into the details we

need to start with the motivation to this. So, in the very first module we looked into

signal representation basics and we said that the a signal is basically a point in a signal

space.

So, as you can think about having basis vectors for representing a vector in a vector

space, you can have basis functions for representing a function signal in a signal space

right. And we did gram Schmidt orthogonalization process, we were able to construct

basis functions for signals etcetera and we got an idea of signal geometry right. Now, we

will sort of revisit that here, but with a little bit of twist in the way we think. So, the

motivation is as follows.
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If, you think about the discrete Fourier transform the DFT provides uniform or equal

frequency resolution,  and is  a  useful  tool  for  analyzing these spectral  content.  Some

questions come about in practice and one of them is can we identify short bursts of high

frequency signals that are riding over low frequency signals, very practical problem I just

have some noise pike in my signal and can I identify this short burst of high frequency

signal it is very practical.

Second problem can be approximate a signal by playing with the signal resolution “non-

uniformly” over the entire spectrum?

Now, if we ask these questions and why would you want to have signal resolution non

uniform over the entire spectrum. Like, if you think about the DFT as I mentioned it

provides uniform frequency resolution and you have this e power minus j 2 pi by n for an

N component  DFT right;  that means,  you are placing the same resolution for all  the

frequencies.

So, I think before we wrap up with this slide I think it will be good to picture how non

uniform resolution versus uniform resolution is in the disk partition diagram. So, let us

draw these circles probably use a red one. So, this is assuming this is a 0 to 2 pi.

So, if you imagine the Fourier right you have uniform which; that means, the resolution

is basically 2 pi upon N here right if this is whole 2 pi then 2 pi upon N is this cone. So,



it has it places uniform emphasis for the frequency components and if N is really large

basically you can resolve to that frequency, but the resolution is the same across all the

frequencies, but in the case of wavelet us one can think about having resolutions, which

are different for different frequencies. For example, I can split this in the band from 0 to

pi by 2 to 0 to pi by 4 and pi by 4 to pi by 2. So, this is say 0 this is say pi by 4 this is pi

by 2 then this cone is 0 to pi by 4 can be further split to pi upon 8 and so on.

So, therefore, there is a sort of non uniform emphasis for the frequency bands right and

this is the distinction that we have to start with when we play with approximating signal

with  such  non  uniform  signal  resolutions  across  the  spectrum.  So,  this  is  basically

uniform resolution and this  distinction  should be made very clear  in  your head,  this

applies to the DFT and this is non uniform resolution and these diagrams are typically

called disk partition diagrams.

But, let us imagine natural signals such as images speech etcetera. Take an example of an

image very likely I mean you would first when you look at an object or a scene the first

thing you see is an intensity integrated over that image you know, it is dark or bright

image right, you just get an average information.

First, then maybe you segment you zoom into a particular object of your interest you go

further deeper you just imagine a snapshot of a screen, you have a nice you know maybe

you have a mountain, you have a river, you have some trees, etcetera. It is very unlikely

somebody will start looking at what specific tree it is? What color the branch is? What

the shape of the leaf is etcetera.

Though such details are visible in the portrait likely, you will see the snapshot and say

yeah this is a natural scenery perhaps that is the first information that you want to grab

grab out. Then maybe you look at probably the sky color is blue or a certain shade of

blue is a next level of detail or how the valley is, what the water is, what the tree is then

the leaf on the tree right? 

So, you as you go through the decomposition of the scene right you place different sort

of a different emphasis of the signal in different regions or certain frequencies you I

mean what are these frequencies. In the image I mean these are basically the changes that

happen right I mean, if you look at a transition between you know a an edge is a good

example of a transition and that is a detail which is basically a high pass component.



So, first is you will get an average information then you will look at the high pass filtered

image, which is the high pass filtered image you might want to go a further step down or

in the low pass filtered image you want to go a further step down right. From average or

an average then details and then again further details so on and so forth. So, there is a

certain kind of resolution that you want to bring in as you decompose the signal. And, the

DFT does not do that and it is probably not a good tool for decomposing a signal keeping

in mind the non uniform resolution that you want to bring into different frequency bands.

And people in the bell half and the elsewhere were interested in compression for such

signals way back in 70’s 1970s and 80s. So, if I want to court the signal why should I

give the emphasis, of having the same number of bits across all the frequency bands I am

wasting my bandwidth I am wasting my power having the same representation across all

the frequency bands.

So,  that  automatically  led  into the  birth  of  tools  transformations  and techniques  that

placed non uniform resist  that  emphasis I mean at  emphasized frequency bands with

different  signal  resolutions,  non  uniformly  across  the  entire  spectrum.  For  efficient,

representation, coding, compression etcetera as well as perhaps for denoising in certain

applications such as case a where we perhaps would not identify such short bursts of

high frequency signals riding over low frequency signal ok.
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Now this in mind what is the idea? Central idea, well we know that if we were to expand

a signal we would need to do this using a basis y basis, because we are invoking the

framework of linear  algebra  into this  you may question well  I  can also approximate

signal using some non-linear components etcetera, but that is probably difficult or the

mathematics could be formidable if you were to think about it in a non-linear space. So,

basically  it  is  easier  to  bring  in  linear  algebraic  framework to  the  signal  space.  So,

therefore, we want to expand the signal using basis functions.

So, now, we use basis functions of different widths to expand a signal across various

scales. The scales I would even call them as spaces I think these things will become very

clear, when we get into more formal definition of what this scale means and you know

interchangeably what space it corresponds to.

So, what we mean in other words project a signal onto a whole series of spaces signal

spaces with different resolution, this is very important different resolution basis functions

of different  widths expanding a signal right  and or possibly projecting a signal onto

whole series of spaces. So, these are sort of ideas. Now with this idea in mind we may

get a few questions into our mind, the first question is can we reconstruct the signal

perfectly?

Second, what are the properties for such a basis across scales? And these ideas lead us to

the  concept  of  “wavelet  us”  right.  These  are  important  questions  to  ask  can  we

reconstruct the signal perfectly if it is not perfect, what is the approximation error in

what sense right,  it  is also very important  in l 2 or l  1 or what sense? What are the

properties  for such a basis  etcetera  right? If  you ask the right kind of questions that

automatically leads us into devising this transformation that we need, which is basically

the wavelet transformation.
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Now, a few things to note unlike sine and cos that have infinite support so, what do you

mean by support right I mean if you take a sin function, this is sin omega T and it goes

on. So, what is the support of the signal this is really infinity right. I do not want infinite

support. For example, if I were to expand this I mean if I were to use a basis perhaps like

this. So, this is and we see that is these are orthogonal signals this esteem up t upon 2

right, over the interval 0 to T both of these signals are orthogonal to each other because

the pi here cancels, this you take inner product of this and this is 0 right, but now these

are also basis in some signal space, but they are finite finitely supported and it did not go

to infinity right.

So,  unlike  sin  and  cosine  that  have  infinite  support  wavelet  us  are  pulses  of  short

duration, that is they are time localized and can provide different spectral information at

different time locations of the signal.

So, now the concept is very clear to us we need different resolution at different scales

and we want signal to be expanded using a set of basis functions, that have finite support,

whose widths are different  across different  scales  right.  And they have to be sort  of

providing you some time localization property such that you can get different spectral

information  at  different  times.  Now,  if  you  put  all  these  I  would  say  qualifying

statements they are not quantifications yet because this is just what is desired?



And if we take all these qualifying statements and then you have to embed them into the

background from Hilbert spaces, that will give us the transformation that we need ok. So,

but before we del delve into the details we have to understand something called the multi

resolution property and that I will try to cover in the next lecture ok. So, this introduces

let us we will stop here.


