
Mathematical Methods and Techniques in Signal Processing - I
Prof. Shayan Srinivasa Garani

Department of Electronic Systems Engineering
Indian Institute of Science, Bangalore

Lecture – 44
Efficient architecture for fractional decimator

So, in the last lecture right we just studied, we studied the efficient realizations for

decimation and interpolation filters. We saw what advantage we get in terms of

computational complexity and you know that the multipliers are not really resting right,

and we did this for an integer decimation rate and integer expansion rate considering M

equals 2 L equals 2. We also discussed how certain properties on fir filters.

That mean if we assume that the fir filter has a symmetric impulse response, how that

would affect the polyphase components and this we got a basic feel about some

interesting properties with the polyphase filters, how those and we were, we thought how

we can incorporate these aspects into efficient realization. One is using efficient

structures themselves for realizing decimation interpolation filters, second is some

additional properties on the base filter itself, how we can bring that factor also into

efficient realization.

So, suppose we want fractional sampling rates and let us assume that we want a an M by

L decimation right. So, so we want to alter the rate 1.5 reduction in sampling rate soon

and so forth. How can we realize efficient structures? This is the question for rational

sampling rate conversion, and if you recall at the very beginning of the multi rate

module, we discussed that some of the basic problems of would be sampling rate

conversion right.

Mean we would want to go from 32 kilohertz to 48 kilohertz or 30, you know 44 kilo

hertz to 40 48 kilohertz to 44.1 kilohertz and so on and so forth right. So, if we need

these conversion rates that are possibly rational rate conversions, how can we go about

doing these? So, now we are now at a stage where we want an efficient structure for

realizing these sampling rate conversions. So, let us get started.

(Refer Slide Time: 03:08)

For doing an M by L decimation without polyphase, we are very inefficient, why at any

point in time L minus 1, out of L multipliers have zero inputs; that means, we are just

filtering these zeros second only one out of M output samples is being retained. I think

this is very very important, these two points are really very important for us, what

happens in up sampling, what happens in down sampling.

Now, let us consider an example here. Suppose M equals 3 and L equals 2 right. So, we

have studied polyphase decomposition, we have studied noble identities. Let us see what

we can do right. One may think of adopting the following architecture using type one

polyphase decomposition. We use a type one polyphase decomposition, we can think of

the following structure right, we have x of n discrete time signal, we have sample this by

2. Now we have three branches, because its type one polyphase decomposition, we look

at it from the decimation filter decimation filter perspective.

So, we down sample by three feed this to a filter which is E naught of z. There is a delay

here. A down sample this by 3 feed this to a filter which is E 1 of z and one more delay

path for the last polyphase component, and then we sum all the all the outputs and we get

what we want and we have accomplished an M by L conversion, this is one structure,

call the structure a and this is exploiting the decimator right. If I gave this problem to one

of you in the class, do an M by L decimation. Probably if you if you just studied noble

identities polyphase decomposition, this is one realization one of you could provide.

Somebody else in the class can still argue. Well why should I exploit just the decimator

here, because we also studied what we could do with a type two polyphase

decomposition for the interpolation filter right, and we will exploit it from the

interpolation filter perspective right. So, let us do that exercise.

(Refer Slide Time: 08:15)

So, you could start with the signal x of n, you filter this through R naught of z, this is

followed by up sampling by 2. There is a delay, then you have R 1 of z, another up

sampler here followed by down sampling by 3 and then y of n, we call this structure b,

this is by exploiting the interpolator

Now, one of you may question if structure b is efficient or structure a is efficient and

realize the possibility that both of these are still inefficient, because in structure a you are

up sampling by 2 here; that means, you are inserting an additional zero that goes through

the filtering process here, which is not efficient right, because we said these two things

have make an M by L decimation inefficient, because you have not exploited the

polyphase at the interpolation side here, at the expansion site followed by some filtering

here.

Similarly, one can argue that, well though you exploited the interpolator here by efficient

realization, you are failing here from the decimation perspective, because anyway you

are throwing away two samples when you are down sampling by 3. Now, can we

combined the question that one has to ask is, can we exploit both a and b to take full

advantage of this emitter and expander right. This is something interesting umm, at this

point to ponder about, are we at the dead end right?

I mean I did expansion decimator, I mean expand you know polyphase realization for

expansion with filtering then designation and the other way around, are we at a dead end

here. So, this is an important question right when we discussed in the very beginning of

the multirate central processing module. Looking at a conversion rate from 32 kilohertz

to 48 or 48 to 32 3 by 2 decimation is happening right. For 48 if I want to reduce it to 32,

it is 1.5 times reduction; that is exactly the same problem here a practical problem.

So, this question was addressed by gentleman, by name Xiao way back in 1990 and that

led into a really truly efficient architecture for an M by L decimator ok, and this is very

simple as you can see with a few elementary tricks, we can we can just get to the, get to

the answer.

(Refer Slide Time: 13:05)

So, we adopt a technique by Hsico way back in 1990, it is published in the transactions, a

trippy transactions and this uses an efficient architecture for an M by L conversion. So,

the trick I think is important, what the trick is. So, if you think about a delay right, this

delay is z power minus 1 can be written as z power minus 3 times z square, no big deal.

If you just say what is a big deal, if I say if I write z power minus 1 as z power minus 3

and z power ma z z square, but observe the powers 3 and 2 that are appearing here, and

carefully think about the M equals 3 and L equals 2 and see what you could do right

So, if you we will see how this trick is useful right. Let us start with this step, we will

start with type two decomposition. At the interpolation stage we have R naught of z

followed by an up sampler, then we have R 1 of z followed by an up sampler and here

we had a delay element right, we had a delay element and this delay element we will

write it as z power minus 3 here, at this branch we will say z square and this is this unit

delay z power minus 1 followed by down sampling by 3

So, this is the first step, the next step is by pushing this down sampler into each of the

branches, as what we have usually done, and then now think about applying noble

identities to this pass. So, let us now the second. This is the first step right, next what we

do is, we push the down sampler into the branches before, therefore, and this would go in

here as well as here ok

And what we would do is, we will use the following identities z power minus 3 followed

by down sampling by 3. This is just like noble identities right, we can we can write this

as down sampling by 3 followed by a delay and then we have an up sampler by 2

followed by z square to be equivalent to an advancement, which is z followed by an up

sampler by 2. So, this will simplify things a little bit ok. So, what we do is, we following

so we have now x of n.

(Refer Slide Time: 18:50)

So, I just write this z here R naught z up sample by 2 down sample by 3, a delay

followed by R 1 z up sample by 2 and then down sample by 3. So, you might be

wondering ha, where this big z appear right, if you apply this noble identity right. So,

you have at this point you have up sampling by 2 followed by z square. We replace this

by z with up sampling by 2. Now this is like a cascade of R naught of z and z you can

just exchange the cascade right, you can say is R naught of z times z is basically z times

R naught of z and that is what is happening here

Now, this seems to be, this seems to be good, we have done some simplification, but we

are not let there, if you can sort of realize. So, because we have R naught of z and R 1 of

z and then we have these, these up samplers followed by down samplers. Now there is

another trick, we could invoke which is from the interconnecting systems. Notice that

you have L equals 2 and M equals 3 the gcd of L and M is 1. So, you can basically

exchange them

So, the next step is to realize that we can interchange the decimator and the expander.

Since gcd of 3 and 2 is 1 ok. We do that and what we get is, x of n, the rest is all the

same, we are down sampling by 3, sampling by 2. We have a delay element parable of c

sample by 2; since its down sample by this, is down sample by 3 followed by up

sampling by 2 and we just exchange the two, we just swap these two

Now, what we have to do is. Now these filters are not in R 1, these are polyphase filters

obtained from interpolation. We can do a type 1 polyphase decomposition on these filters

further, because this is basically filtering followed by decimation. We will do a type one

polyphase decomposition over R naught and R 1 further

(Refer Slide Time: 23:52)

So, let us to a type one polyphase decomposition on components R naught of z and R 1

of z. So, if we did this, say R naught of z can be written as some R naught naught z cube

plus z power minus 1 R naught 1 of z cube plus 2 delay elements R naught 2 z cube, and

we have R 1 of z is R 1 0 z cube delay with R 1 1 of z cube plus 2 delays R 1 2 of z cube

and then we will sketch this.

So, basically we have x of n, we have a z here. So, we have down sample by 3. So,

basically then you apply noble identities right, you plug the polyphase representation and

apply noble identities, I get R naught of R naught naught of z delay down sample by 3 R

naught 1 of z and one more delay down sample by 3 followed by filtering with this filter

R naught 2 of z, and then I combine all of these components together, and then I up

sample by 2 followed by a delay right. And then similarly we have one more branch and

from which we have to realize something similar to what we did.

So, we have down sample by 3 followed by this filter R 10 of z plus branch, then we

have a delay. So, I think I would just erase some of these blocks here just to get this

diagram a little symmetric followed by down sampling by 3 with R 1 1 of z and then 1

more delay element here down sample by 3, filter this through R 1 2 of z. Now we

combine all of these up sample this by 2 and then sum this up at this point right.

And this is an efficient realization because we started off with a type two decomposition

from the interpolation side and then we did a type one decomposition, exploiting the

decimation side and then we have really, basically we are very efficient we are not

throwing away samples as a part of the decimation process right. We are not wasting our

efficiency on that and then. Similarly we are not just filtering these zeros, because we

started off with an efficient realization for interpolation in the very first step right and

this is an efficient architecture for fractional sampling rate conversion

I mean you could decimate, you could reduce rate by 1.5, you could increase rate by 1.5,

you could do any rational sampling rate conversion, I mean here I mentioned this is a

fractional sampling rate, because any we are doing an M by L, we are doing a reduction

by 1.5 times ok. So, this is a sort of the goal and we have applied all the tricks that we

could think of we did polyphase decomposition, we then applied noble identities. We

looked at inter connecting systems, we did both type one and type two. So, all the tricks

that we learnt as identities, we have basically taken care of in this in this architecture

Now, we can imagine why this gcd has to be, why this gcd is important right and if we

want a nearest M and L parameter; such as such that the gcd of M comma L equals 1. So,

if you think about 48 kilohertz and 44.1 kilohertz, look at the ratio 48 by 441 and reduce

this to the nearest rate that you nearest M by L rates that you want and then you can go

about realization of efficient architectures for this.

So, I think this is a very important first step and then if you. Now we did not think about

how we could exploit the base filter itself, I mean I leave this as a homework exercise.

Suppose I give you a base filter which is an fir filter and that has a symmetric impulse

response. Now take that property into account and then see how these polyphase filters

could be more efficiently constructed right. I mean how you could do better filtering

operations with these filters.

At this point you might just wonder about one little detail, which is you have this

element, which is basically z, which is an anticipation element, it is not a delay right, it is

an anticipation element and one way wonder how can you realize this in practice, and it

is not too difficult to think about it and what is what is this delay this anticipation

element telling us; that means, we need to look at one sample in the future right.

I mean this architecture would seem futile, if you are thinking about serial

communication where you are sending one sample at a time for processing and there you

really cannot anticipate anything right, because everything is the present or whatever you

have in the past, but if you buffer these samples by some number of samples, initially

then you can point to a particular location in your buffer. I mean you can always

basically get over this anticipation, because you, since you buffered you already have

some samples at one shot.

So, therefore, you can really realize this advancement by figuring out, what that sample

has to be and I think post that everything would be basically pipeline and the whole

architecture can be very efficiently realized in hardware.

So, this is a little bit of detail, I think a little bit of thought from your side can make you

realize and understand that this is indeed a very practical architecture by just buffering,

you can you can realize everything to work as is ok. I think with this we are done with

this lecture.

