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Efficient architecture for fractional decimator

So,  in  the  last  lecture  right  we just  studied,  we studied  the  efficient  realizations  for

decimation  and  interpolation  filters.  We  saw  what  advantage  we  get  in  terms  of

computational complexity and you know that the multipliers are not really resting right,

and we did this for an integer decimation rate and integer expansion rate considering M

equals 2 L equals 2. We also discussed how certain properties on fir filters.

That mean if we assume that the fir filter has a symmetric impulse response, how that

would  affect  the  polyphase  components  and  this  we  got  a  basic  feel  about  some

interesting properties with the polyphase filters, how those and we were, we thought how

we  can  incorporate  these  aspects  into  efficient  realization.  One  is  using  efficient

structures  themselves  for  realizing  decimation  interpolation  filters,  second  is  some

additional  properties  on the  base filter  itself,  how we can bring that  factor  also into

efficient realization.

So, suppose we want fractional sampling rates and let us assume that we want a an M by

L decimation right. So, so we want to alter the rate 1.5 reduction in sampling rate soon

and so forth. How can we realize efficient structures? This is the question for rational

sampling  rate  conversion,  and  if  you  recall  at  the  very  beginning  of  the  multi  rate

module,  we  discussed  that  some  of  the  basic  problems  of  would  be  sampling  rate

conversion right.

Mean we would want to go from 32 kilohertz to 48 kilohertz or 30, you know 44 kilo

hertz to 40 48 kilohertz to 44.1 kilohertz and so on and so forth right. So, if we need

these conversion rates that are possibly rational rate conversions, how can we go about

doing these? So, now we are now at a stage where we want an efficient structure for

realizing these sampling rate conversions. So, let us get started.
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For doing an M by L decimation without polyphase, we are very inefficient, why at any

point in time L minus 1, out of L multipliers have zero inputs; that means, we are just

filtering these zeros second only one out of M output samples is being retained. I think

this  is  very  very  important,  these  two points  are  really  very  important  for  us,  what

happens in up sampling, what happens in down sampling.

Now, let us consider an example here. Suppose M equals 3 and L equals 2 right. So, we

have studied polyphase decomposition, we have studied noble identities. Let us see what

we can do right. One may think of adopting the following architecture using type one

polyphase decomposition. We use a type one polyphase decomposition, we can think of

the following structure right, we have x of n discrete time signal, we have sample this by

2. Now we have three branches, because its type one polyphase decomposition, we look

at it from the decimation filter decimation filter perspective.

So, we down sample by three feed this to a filter which is E naught of z. There is a delay

here. A down sample this by 3 feed this to a filter which is E 1 of z and one more delay

path for the last polyphase component, and then we sum all the all the outputs and we get

what we want and we have accomplished an M by L conversion, this is one structure,

call the structure a and this is exploiting the decimator right. If I gave this problem to one

of you in the class, do an M by L decimation. Probably if you if you just studied noble

identities polyphase decomposition, this is one realization one of you could provide.



Somebody else in the class can still argue. Well why should I exploit just the decimator

here,  because  we  also  studied  what  we  could  do  with  a  type  two  polyphase

decomposition  for  the  interpolation  filter  right,  and  we  will  exploit  it  from  the

interpolation filter perspective right. So, let us do that exercise.
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So, you could start with the signal x of n, you filter this through R naught of z, this is

followed by up sampling by 2. There is a delay, then you have R 1 of z, another up

sampler here followed by down sampling by 3 and then y of n, we call this structure b,

this is by exploiting the interpolator

Now, one of you may question if structure b is efficient or structure a is efficient and

realize the possibility that both of these are still inefficient, because in structure a you are

up sampling by 2 here; that means, you are inserting an additional zero that goes through

the filtering process here, which is not efficient right, because we said these two things

have  make  an  M  by  L  decimation  inefficient,  because  you  have  not  exploited  the

polyphase at the interpolation side here, at the expansion site followed by some filtering

here.

Similarly, one can argue that, well though you exploited the interpolator here by efficient

realization, you are failing here from the decimation perspective, because anyway you

are  throwing  away  two  samples  when  you  are  down sampling  by  3.  Now, can  we

combined the question that one has to ask is, can we exploit both a and b to take full



advantage of this emitter and expander right. This is something interesting umm, at this

point to ponder about, are we at the dead end right?

I mean I did expansion decimator, I mean expand you know polyphase realization for

expansion with filtering then designation and the other way around, are we at a dead end

here. So, this is an important question right when we discussed in the very beginning of

the multirate central processing module. Looking at a conversion rate from 32 kilohertz

to 48 or 48 to 32 3 by 2 decimation is happening right. For 48 if I want to reduce it to 32,

it is 1.5 times reduction; that is exactly the same problem here a practical problem.

So, this question was addressed by gentleman, by name Xiao way back in 1990 and that

led into a really truly efficient architecture for an M by L decimator ok, and this is very

simple as you can see with a few elementary tricks, we can we can just get to the, get to

the answer.
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So, we adopt a technique by Hsico way back in 1990, it is published in the transactions, a

trippy transactions and this uses an efficient architecture for an M by L conversion. So,

the trick I think is important, what the trick is. So, if you think about a delay right, this

delay is z power minus 1 can be written as z power minus 3 times z square, no big deal.

If you just say what is a big deal, if I say if I write z power minus 1 as z power minus 3

and z power ma z z square, but observe the powers 3 and 2 that are appearing here, and

carefully think about the M equals 3 and L equals 2 and see what you could do right



So, if you we will see how this trick is useful right. Let us start with this step, we will

start  with type two decomposition.  At the interpolation stage we have R naught of z

followed by an up sampler, then we have R 1 of z followed by an up sampler and here

we had a delay element right, we had a delay element and this delay element we will

write it as z power minus 3 here, at this branch we will say z square and this is this unit

delay z power minus 1 followed by down sampling by 3

So, this is the first step, the next step is by pushing this down sampler into each of the

branches,  as  what  we have  usually  done,  and  then  now think  about  applying  noble

identities to this pass. So, let us now the second. This is the first step right, next what we

do is, we push the down sampler into the branches before, therefore, and this would go in

here as well as here ok

And what we would do is, we will use the following identities z power minus 3 followed

by down sampling by 3. This is just like noble identities right, we can we can write this

as  down sampling by 3 followed by a  delay and then we have an up sampler  by 2

followed by z square to be equivalent to an advancement, which is z followed by an up

sampler by 2. So, this will simplify things a little bit ok. So, what we do is, we following

so we have now x of n.
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So,  I  just  write  this  z  here R naught  z  up sample  by 2 down sample by 3,  a  delay

followed by R 1 z  up  sample  by 2 and then  down sample  by  3.  So,  you might  be



wondering ha, where this big z appear right, if you apply this noble identity right. So,

you have at this point you have up sampling by 2 followed by z square. We replace this

by z with up sampling by 2. Now this is like a cascade of R naught of z and z you can

just exchange the cascade right, you can say is R naught of z times z is basically z times

R naught of z and that is what is happening here 

Now, this seems to be, this seems to be good, we have done some simplification, but we

are not let there, if you can sort of realize. So, because we have R naught of z and R 1 of

z and then we have these, these up samplers followed by down samplers. Now there is

another trick, we could invoke which is from the interconnecting systems. Notice that

you have L equals 2 and M equals 3 the gcd of L and M is 1. So, you can basically

exchange them 

So, the next step is to realize that we can interchange the decimator and the expander.

Since gcd of 3 and 2 is 1 ok. We do that and what we get is, x of n, the rest is all the

same, we are down sampling by 3, sampling by 2. We have a delay element parable of c

sample  by  2;  since  its  down sample  by  this,  is  down sample  by  3  followed  by up

sampling by 2 and we just exchange the two, we just swap these two

Now, what we have to do is. Now these filters are not in R 1, these are polyphase filters

obtained from interpolation. We can do a type 1 polyphase decomposition on these filters

further, because this is basically filtering followed by decimation. We will do a type one

polyphase decomposition over R naught and R 1 further 
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So, let us to a type one polyphase decomposition on components R naught of z and R 1

of z. So, if we did this, say R naught of z can be written as some R naught naught z cube

plus z power minus 1 R naught 1 of z cube plus 2 delay elements R naught 2 z cube, and

we have R 1 of z is R 1 0 z cube delay with R 1 1 of z cube plus 2 delays R 1 2 of z cube

and then we will sketch this.

So, basically we have x of n, we have a z here. So, we have down sample by 3. So,

basically then you apply noble identities right, you plug the polyphase representation and

apply noble identities, I get R naught of R naught naught of z delay down sample by 3 R

naught 1 of z and one more delay down sample by 3 followed by filtering with this filter

R naught 2 of z, and then I combine all of these components together, and then I up

sample by 2 followed by a delay right. And then similarly we have one more branch and

from which we have to realize something similar to what we did.

So, we have down sample by 3 followed by this filter R 10 of z plus branch, then we

have a delay. So, I think I would just erase some of these blocks here just to get this

diagram a little symmetric followed by down sampling by 3 with R 1 1 of z and then 1

more delay element here down sample by 3, filter  this through R 1 2 of z.  Now we

combine all of these up sample this by 2 and then sum this up at this point right.

And this is an efficient realization because we started off with a type two decomposition

from the interpolation side and then we did a type one decomposition,  exploiting the



decimation  side and then  we have really, basically  we are  very efficient  we are  not

throwing away samples as a part of the decimation process right. We are not wasting our

efficiency on that and then. Similarly we are not just filtering these zeros, because we

started off with an efficient realization for interpolation in the very first step right and

this is an efficient architecture for fractional sampling rate conversion

I mean you could decimate, you could reduce rate by 1.5, you could increase rate by 1.5,

you could do any rational sampling rate conversion, I mean here I mentioned this is a

fractional sampling rate, because any we are doing an M by L, we are doing a reduction

by 1.5 times ok. So, this is a sort of the goal and we have applied all the tricks that we

could think of we did polyphase decomposition,  we then applied noble identities. We

looked at inter connecting systems, we did both type one and type two. So, all the tricks

that we learnt as identities, we have basically taken care of in this in this architecture

Now, we can imagine why this gcd has to be, why this gcd is important right and if we

want a nearest M and L parameter; such as such that the gcd of M comma L equals 1. So,

if you think about 48 kilohertz and 44.1 kilohertz, look at the ratio 48 by 441 and reduce

this to the nearest rate that you nearest M by L rates that you want and then you can go

about realization of efficient architectures for this.

So, I think this is a very important first step and then if you. Now we did not think about

how we could exploit the base filter itself, I mean I leave this as a homework exercise.

Suppose I give you a base filter which is an fir filter and that has a symmetric impulse

response. Now take that property into account and then see how these polyphase filters

could be more efficiently constructed right. I mean how you could do better  filtering

operations with these filters.

At  this  point  you  might  just  wonder  about  one  little  detail,  which  is  you  have  this

element, which is basically z, which is an anticipation element, it is not a delay right, it is

an anticipation element and one way wonder how can you realize this in practice, and it

is  not  too difficult  to  think  about  it  and what  is  what  is  this  delay  this  anticipation

element telling us; that means, we need to look at one sample in the future right.

I  mean  this  architecture  would  seem  futile,  if  you  are  thinking  about  serial

communication where you are sending one sample at a time for processing and there you

really cannot anticipate anything right, because everything is the present or whatever you



have in the past, but if you buffer these samples by some number of samples, initially

then  you  can  point  to  a  particular  location  in  your  buffer.  I  mean  you  can  always

basically get over this anticipation, because you, since you buffered you already have

some samples at one shot.

So, therefore, you can really realize this advancement by figuring out, what that sample

has to be and I think post that everything would be basically pipeline and the whole

architecture can be very efficiently realized in hardware.

So, this is a little bit of detail, I think a little bit of thought from your side can make you

realize and understand that this is indeed a very practical architecture by just buffering,

you can you can realize everything to work as is ok. I think with this we are done with

this lecture.


