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Introduction to random process

So, let us get started with an overview of the basics of random processes because we will

have to deal with these concepts in this course. So, it is not too difficult, it will require a

background in basic probability. So, I urge you to study the basics of probability through

other courses in NPTEL or otherwise and ramp up on this concept because if I spend my

lectures  on probability, we can spend a semester or probably three semesters on this

course, but I will give you the basics of a random signals.
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A random process x of t which could be possibly continuous or discrete is a family of

functions  that  are  possibly  real  or  complex  perhaps  scalar  or  vector  defined  on the

probability space. So, there is a very clear axiomatic definition of what a probability

spaces. And at specified times t 1, t 2 so on, the samples x of t 1 x of t 2 dot dot are

essentially random variables, random vectors. So, given the probability space omega the

field and the measure x of t comma zeta belonging to the field. So, given the tuple which

is omega, the field f and the probability measure p, x of t comma zeta is a function that



belongs to this field for a fixed t on the real line minus infinity less than t less than

infinity.

So, if you fixed t then basically this becomes a random variable and that belongs to this

field else it is just an ordinary function. So, when zeta is fixed, X of t, zeta is an ordinary

time function. When t is fixed, X t, zeta becomes a random variable that is given the

three tuple omega, the Borel field f and the probability measure p, X of t comma zeta

belongs to the field for a fixed t on the real line which is from minus infinity to infinity.

And when zeta is fixed, X of t comma zeta is an ordinary time function; and when t is

fixed X of t comma zeta becomes a random variable.
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So, given if you think about waveforms, I choose perhaps zeta equals say 0.1, I get one

waveform;  0.1 comma t.  If  I  choose say zeta  is  say 0.5,  I  may get  another  random

waveform. So, depending upon this parameter zeta, I may get different time functions.

So, this is the idea. But if I fix a particular time say t equals t dash - a particular time is

fixed right, then these points they are random variables right and that distinction is very

important. I mean when we just learn probability, we just look into random variables and

then we look at some properties associated with these random variables. But with signals

we have to think about random processes which means given a value that it takes the

random variable  takes,  I  mean  you  basically  depending  on  the  parameter  you  have

basically a time function.



So, imagine  a process,  which is  A sine omega t  plus phi.  Suppose,  I  say that  phi is

uniformly distributed between 0 and 2 pi. Now, if you plug in phi equals 0 here, you

have A sine of omega t. You plug phi equals say pi by 2, you get basically a cosine, you

get different waveforms, but you fix a particular value of time and observe, this basically

are random variables.

So, I think it is a very important notion. And often in signals can be thought about as

random signals because they may be parameterization in terms of if of a random phase or

a random amplitude  possibly a random frequency, we do not know. So, these things

could be basically random variables. And then once you specify those parameters zeta,

then  basically  you have  a  function  of  time.  So,  basically  a  random process  has  two

parameters zeta and t.  And once we specify the random process, we are interested in

some of the statistics of these random processes. So, we will just basically define some

of these properties and then most more rigorously get into the statistical specification of

a random sequence.
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So, mean and correlations, the mean of a random process is denoted as expectation of x

of  t  and can be  a  function  of  the time  index.  So,  mu x of  t  is  basically  defined as

expectation of X of t.  So,  I  think one of the questions that may come to your mind

naturally is how are you computing this expectation. I have this waveform in time, am I

taking all the samples across time and taking an empirical average over this, or I take a



collection  of  all  these  waveforms  and  then  I  average  over  the  distribution  of  the

underlying random variable or vector. So, these are two questions that naturally come

into your mind right, how are you calculating this average right, is it just a normal time

average that you think about or is it the statistical expectation.

So, depending upon that there is a time averaged mean and a statistical mean, so get this

in your mind very carefully. I mean we will be not perhaps have to deal with this when

you think about just the normal statistical mean, I give you some distribution Gaussian

distribution. I ask you to compute its mean or you know uniform distribution compute its

mean you can compute it you do not have a big problem in doing it. Here now you have

to  imagine  you  have  a  collection  of  all  these  waveforms.  Now,  do  you  pick  one

waveform that you get from this collection of waveforms just do a time average on that;

or you collect all the waveforms, and take the statistical  average over the underlying

distribution of the random variables and then get what this average waveform is. These

are two different notions which have to be crystal clear in your mind.

So, how you take the averages are sort of the details here. And mean can be a function of

the time index as one can expect, the function the mean itself can be a function of time.

Now, similarly to what we have considered for the mean there is something called the

autocorrelation function. And the autocorrelation function is given by R x x of t 1 comma

t 2 that  is  parameterize  at  two different  times t  1 and t  2.  And this  is  basically  the

expectation of X of t 1 with X conjugate of t 2 minus infinity less than t 1 t 2 less than

infinity this is for complex waveforms. For example, you may have X of t say A e power

j 2 pi f t in communication sometimes you will find signals of this type carriers for such

signals for phasors you may have to consider it is a complex signal. So, therefore, you

may have to consider the conjugate.

Similar  to  the  autocorrelation  function,  we  have  the  covariance  function.  And  the

covariance function is given by covariance x x of t 1 comma t 2 and this is basically you

subtract the mean from the waveform x of t right at these times t 1 and t 2 and then

basically compute the expectation. So, this is x of t 1 minus mu x of t 1 times x of t 2

minus mu x of t 2 conjugate. And it is very straightforward to verify this is R x x of t 1

comma t 2 minus mu x of t 1 times mu x conjugate. And these properties in terms of auto

correlation covariance  etcetera  will  be very useful  in many of the tools  that  we will

develop later on in the course.



For example the covariance will be very useful when we have to derive the Karhunen-

Loeve transform - KL transform that means, I give you a pool of vectors from we know

from a random process. And what can we say if you were to expand this signal in terms

of an optimal basis in one of which is interdependent which is dependent on the data.

And of course, optimality conditions have to be described more carefully, but we will see

this application.

Then autocorrelation function this finds a role when you have to really think about the

power spectral density of a process. And why are you interested in power spectral density

of a process in communications, because let us say data is random data, I give you a

random data which can be zeros and ones in some way. And this  random data goes

through some filter right, we assume its linear time invariant system LTI system. So,

therefore, you have a transfer function, the data gets filtered through an LTI system. And

then  we  are  interested  in  the  power  spectrum at  the  output  that  means  now this  is

basically is the data is being filtered through this filter. And then we were interested in

the  spectrum.  And  the  channel  for  example,  why  I  say  about  a  filter  because  the

communication channel may be fixed, you cannot control how air is, you cannot control

how the magnetic medium is. So, the channel is fixed.
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And if  the  channel  has  certain  spectral  nulls  that  means,  if  you if  you imagine  the

channel has certain holes at some frequencies, I just say magnitude square, say this is



suppose what you have. Then I want to ensure my data the power and the data is I do not

allocate power in my data which lands up here. The channel has a spectral null, which

means at this at frequencies pi by 4, pi by 3, pi by 2, there is 0 energy. So, even if you

pump in power on your data, the data also has a spectrum right.

For example, if you think about 1 1 1 1 dot dot dot it is basically like a dc. If you think

about data which is 1 minus 1 1 minus 1 basically it is it is having a high pass component

right. If I think about data which is 1 1 minus 1 minus 1 1 1 minus 1 minus 1 dot dot am

modulating in some ways. So, if I give you random data 1 minus 1 1 minus 1 1 1 1 minus

1  blah,  blah,  blah  random data,  this  has  a  certain  power  spectrum  if  it  has  certain

properties.  And often I have to calculate,  if I have to calculate the power spectrum I

should calculate the autocorrelation of the sequence.

So, this is I give you a discrete sequence here, and for which have to compute dot of

correlation of this discrete sequence, because you will know the power spectrum from

this result from your from Wiener-Khinchin theorem. And if you know that this has some

power at pi by 4 and pi by 3, then when I just multiply this spectrum with this spectrum

basically its I am just losing my energy. Though I am having energy in the sequence at

frequencies pi by 4 and pi by 3, because it channel has nulls are these frequencies and

wasting my power by encoding it in certain way. So, this is basically the role of what

modulation codes do for us.

And how you want to design your modulation codes to choose the spectrum right that is

the  motivation  keeping  that  as  a  motivation  this  is  important  for  us  to  compute

autocorrelation functions. So, I said it would be discrete would be continuous. So, I gave

you an example here, where you have these ones and minus ones which are discrete and

you might want to compute autocorrelation of such sequences.
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So, let us try to visit an example and then see how to compute these things it is not too

difficult. So, let us consider a sinusoidal random process. So, suppose x of t is A sine

omega naught t plus theta, where theta is uniformly distributed over minus pi to plus pi.

Suppose, A is also a random variable possibly distributed according to some distribution;

and let A and theta be statistically independent. Then if you want to compute the mean of

this waveform, so I think I would imagine this picture there are two random variables a

and theta right. And basically if you think about the sinusoid you can basically express it

in terms of a phasor right e power of j omega naught t plus theta plus e power minus j by

2 j, you can express it in this form. And basically what you have is you have two phasors

that  are  summed using  this  random variable.  And  you can  think  about  several  such

practical scenarios.

Imagine I send you a beam of light right and then basically this is now there is a phase,

there is a phasor, and then there is basically optical speckle that is happening, therefore

this A could be a random variable whose length may be distributed according to some

distribution. And then that is a practical scenario one can think about. So, if A and theta

are both random variables and they are statistically independent and then you have a

waveform here for a fixed omega naught omega naught is deterministic right.

So, the mean is basically the expectation of A sine omega naught t plus theta, and since

there  since  A and  theta  statistically  independent  I  could  write  this  as  E  A times



expectation of sine omega naught t plus theta. And this is expectation of A times I have

to average it right over the distribution of theta. So, therefore, is 1 over 2 pi integral

minus pi to plus pi sine omega naught t plus theta d theta because it is the uniform PDF, I

pulled the 1 over 2 pi outside and we know this is E of A times 0, because your averaging

the sinusoid over its cycle  it  is  0. So, irrespective of what the mean is  for A this  is

basically zero. So, it is a sort of an interesting observation for this example.
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And we can also compute the autocorrelation which is R x x t 1 comma t 2 is expectation

x conjugate t 1 write a expectation of t 1 times x conjugate t 1 which is expected value of

A square sine omega naught t 1 plus theta times sine omega naught t 2 plus theta, which

is  basically  E of  A square expectation  of  A square  times  expectation  of  sine omega

naught t 1 plus theta times sine omega naught t 2 plus theta. Now, this quantity here is

essentially one half cosine omega naught cosine of omega naught t 1 minus t 2 minus

cosine of 2 theta plus t 1 plus t 2 into omega naught. You can just verify this from your

compound angle formula.

Now, this has the random parameter theta, this does not have the random parameter theta.

This  is  a  constant  expectation  of  a  constant  is  a  constant  this  is  basically  a  cosine

function,  you average it  out in  that in  interval  between minus pi  to plus pi that  just

cancels out, because it is 0, the two cycles cancel out. So, basically what you end up is



basically E of A square times one half is pulled out cosine omega naught t 1 minus t 2;

that means the autocorrelation depends on the time lag.

So, we have got basically a sort of a feel for what is a random process essentially we

have gotten  a  feel  sort  of  an intuitive  feel  that  it  is  essentially  a  time function  it  is

parameterized  by two quantities  which is  basically  zeta  and t.  So,  if  I  fix  zeta,  it  is

basically an ordinary time function. And if I fix a t, it becomes a random variable. And

then you can do whatever you want to do basically  look at  investigate  the statistical

properties  of  this  process.  You can  take  the  time  average,  you can  take  a  statistical

average,  you  can  take  a  time  expect  time  autocorrelation,  you can  take  a  statistical

autocorrelation right, you can take all the moments time moments, statistical moments,

you can  do all  these  kinds  of  operations.  And accordingly  there  are  various  notions

whether this process is a ergodic and so on and so forth. If the time average is equal to

the statistical average, it is ergodic in the mean and it is a very powerful concept, I think

a lot  of  theorems in the foundations  of communication  theory rest  on this  notion of

ergodicity.


