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Basics of probability and random variables

Let us, delve into the basics of probability and random processes as required for this

course.  So,  I  am not  going to  go  in  to  details  of  probability  and random processes

because it is a separate course in itself, but I am just going to cover the material just for

your understanding, so that you are comfortable to the rest of the course. So, let us first

understand what a probability space is and for which we have to formally get into the

details. 
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So, let us briefly understand what a probability space is. For this purpose, we need to

understand the definitions behind fields and sigma fields, this is more in a modern set

theoretic setup, one can think about the combinatorial way of looking into probability,

but the modern version is a set theoretic approach. So, therefore, I will cover this from

the set theoretic approach, just basics. So, that you are comfortable seeing through this

material. So, now let us start with our understanding of what fields are, right. 
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Now, consider a universal set omega and a collection of subsets of omega, you have a

universal set and there looking into a collection of subsets of omega. Let E F so on;

denote these subsets in this collection. Now, this collection of subsets forms a field script

M if the following properties hold. So, what are the properties? So, the null set belongs

to the field and the universal set belongs to the field, that is null set and universal set are

part of the field. 

Second, if the subset E belongs to the field M and subset F belongs to the field M, then

the union of E and F belongs to field and so is the intersection of E and F that belongs to

the field. The other property is, if E belongs to the field, then E complement belongs to

the field. Now, these are the properties, a sigma field F is a field that is closed under any

countable set of unions intersections and combinations of these unions and intersections,

that is if E 1 E 2 and so on t E n maybe you can extend this, belong to the field I mean I

said we can extend this E 1 e 2 so on, E n because you can have infinite subsets. 

See, if they belong to the field so do the union of all these sets and the intersections to a

set of elements in at least 1 of E i, this would be the intersection and here is a set of all

elements in every E i right. So, this implies set of all elements in at least one E i, this is

set of all elements in every E i. 



(Refer Slide Time: 07:07)

Now, there is this notion of countability, that I introduced and what we mean as follows,

a set S is called countable if there is an injective function f from the set S to the set of

natural numbers which is a 0, 1, 2, so on.

So,  I  think  you  have  to  ponder  some  things  here,  the  set  of  rational  numbers  are

countably infinite, whereas a set of real numbers are uncountably infinite. So, the details

of,  the proof of this  countably infinite  and uncountably infinite  you can get  into the

details by looking into any analysis book and you may get some idea how to go about

these.
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Now, let us go a little further, consider an experiment given by script H with a sample

description space omega, if omega has a countable number of elements then every subset

of omega may be assigned a probability, consistent with the axioms such that for every

event E belonging to the field F, script F. The following hold 1, the probability of the

event should be greater than or equal to 0.

Now, we are assigning some matrix, some measure to this. So, probability of the event

has to be greater than or equal to 0, probability of omega, which is your universal set has

to be 1 and probability of E union F equals probability of E plus, probability of F, if the

probability of E into section F is 0. Now, the class of all subsets make up a sigma field

and each subset is an event. So, here we are defining first, what an event is, in terms of

subsets and that is an important discussion that we need to make. 
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When omega is not countable, is an important point and when can you have something

which is not countable, that is omega is possibly the real line not every subset of omega

can be assigned a probability consistent with the above axioms, we listed the axioms in

the previous slide. 

So, only those subsets for which probability can be assigned or called events, now the

collection of those subsets is smaller than the collection of all possible subsets, that one

can define on omega and this smaller collection is called a sigma field. It is also known

as a Borel field. So, the 3 objects omega, the field and the probability measure form a

probability space, just to recall omega is the sample description space, F is the field and

we have  seen  what  properties  of  field  must  satisfy  and  then,  this  is  the  probability

measure, consistent to the axioms which we described. 

So, when somebody talks about probability space, I think you have to understand that we

mean that we are referring to these 3 objects, which are part of this space that is the

sample description space,  the field and the probability  measure.  This is an important

concept in the context of the modern set theoretic framework for probability and often

you will require this notion in your research or in your higher understanding. Let us, just

revisit in this context the simple coin toss experiment and see how we can relate these

objects. 
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So, suppose we do fair coin toss once, that means, we have a collection of 2 subsets,

which are the head and the tail outside of the null set and the universal set. So, universal

set is basically comprises of the head and the tail. The sigma field of events consists of

the following sets, it could be a head, it could be a tail, it could be a null set, it could be

the universal set. 

See the distinction between the probability description space and the sigma field and

then, we have the probability measure, the probability of measure is basically measure on

this sigma field of events. So, the probability of the head since it is a fair coin toss it is 1

half and probability of tail is also 1 half, probability of a null set is a 0, probability of the

universal set is 1. So, this gives you a sort of an idea, what we are referring to. So, this is

our object omega, this is our object, this is a field, this is the probability measure P and

this is the probability space for a fair coin toss, the experiment. 

Now, let us recall a few other basics and we will try to recap a few things.
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Probability of the joint occurrence of 2 events A and B is given by probability of A and B

how to read this as probability of A and B, this is basically the joint probability of events

A and B. So, an example is A is an event, when it rains B is an event, when it is sunny C

could be a joint event, when it rains and is sunny probably you might sense a rainbow.

So, probability of this event C is the joint of A and B, probability of the occurrence of

event A and B and that is what we mean, this is basically an intersection. 

Now, one can think about how to do this from a combinatorial way, that means, you can

count the number of events when it rains, count the number of events when it is sunny,

count  the  number  of  events  when  it  is  raining  and  it  is  sunny  over  the  number  of

experiments that you conduct and then you can bring this notion of what the probability

measure has to be, so this is some basics. Let us also recall a few definitions. 
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Independence, 2 events A and B are statistically independent. If and only f probability of

A and B that has joint occurrence of probabilities, the joint occurrence of events A and B,

the probability  of the joint  occurrence of the events A and B can be decomposed as

probability  of A times probability  of B. There is also a notion of mutually  exclusive

property. So, what it means is, occurrence of 1 implies non occurrence of the other. So, in

this case probability; the joint probability of A and B is 0 and therefore, the probability of

A union B is probability of A plus probability of B and then we should also know the

Baye's theorem, I think all of you would have seen this from your high school but just to

recap.
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If Ai's i equals 1 to n be a subset or to be a set of disjoint and exhaustive events over a

probability space P some script P here, then the union over all these Ai's is omega. Let us

assume that A i intersection A j is null for i naught equal to j, that is take 2 events and it

there they do not jointly occur channel, then for any event B over this probability space P

the probability of A j given this event B is probability of B given A j times, probability of

A j  divided  by  summation,  i  going  from  1  to  n  probability  of  B  given  A i  times

probability of A i. So, this is basically probability of B and we have expressed the joint of

probability of A j and B in into different ways using the Baye's theorem. The proof is

pretty  straight forward from the basic definition of conditional  probability  and I  will

leave this as sort of an exercise for you to ponder about.
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So let us, now get into the understanding of what probability distribution function is.

This  is  also  called  the  cumulative  distribution  function.  The  probability  distribution

function contains the information necessary to compute the probability of an event E, for

any event E in the Borel field of events . So, if you get into the mathematical notation,

the probability distribution function is basically the probability over all zeta such that

under the mapping x of zeta you are looking at a collection of all zeta such that, this

mapping is less than or equal to some chosen x. So, this is given as the probability, the

random variable over the event minus infinity to some small x some chosen number.

So, this is basically set of all outcomes zeta in the underlying sample space such that x of

zeta assumes values less than some chosen small x. I give some small x and I want to

figure out under the mapping x, the set of all outcomes zeta such that x's zeta is less than

or equal to that chosen quantity. Now, as you can see the set of all zeta such that x of zeta

is less than or equal to x is contained within omega and this is a subset of outcomes, that

under the mapping x generates the set minus infinity to x. Now, we have a few properties

for this probability distribution functions, I am just going to enumerate them.
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First, the probability distribution function evaluated at infinity is 1, F infinity of f x of

minus infinity is a 0. if I consider 2 quantities small x 1 less than or equal to small x 2,

this implies that the probability distribution function evaluated at small x 1 is less than or

equal to the probability distribution function evaluated at small x 2. 

This is basically the non decreasing property of the cumulative distribution function or

the probability distribution function. Then the there is the third property, capital F x of

small x is continuous from the right, that is the probability distribution function is right

continuous.  What  it  means is,  capital  F  subscript  capital  x of  x is  basically  limit  as

epsilon goes to 0 of the distribution function, probability distribution function evaluated

at  x  plus  epsilon  slightly  at  epsilon  greater  than  0.  If  the  distribution  function  is

discontinuous at a point say x naught, then the distribution function at x naught will be

taken to mean the value of the probability distribution function immediately to the right

of x naught. So, if at that point x naught, if it is discontinuous then you will consider the

value  of  the probability  distribution  function immediately  to  the right  of the point  x

naught and that is why we have the right continuous property here. 
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Now, let us consider a simple example, suppose x is a binomial random variable then

probability that x equals some k is given by n choose k p power k 1 minus p power n

minus k this is the E probability mass function and the probability distribution function is

given by this quantity where you basically look at the floor of x, some all the masses

from k equals 0 to h o c floor of x. Now, how should this look like if you just evaluate for

n equals 3. So, when k equals 0 is 0. Let us, plot this probability distribution function, it

has to let us say we have 3 values 0, 1, 2 and 3. At 3 definitely this has to be 1, because

you do not have anything more than 3, so therefore, this has to be 1.

Let us assume that we accumulate the mass till 1 and that quantity is a 1 and then there is

a discontinuity then we have we accumulate a mass at 2 and that is a 2 and then we have

a mass at 1, a mass of 2 and basically after 3 it is basically a constant. So, if you want to

evaluate probability that 1.5 is less than x, less than 3. So, x is some number given to

you. Then, this is basically the distribution if you want evaluate this probability this is

the  distribution  at  3  you  assume  slightly  though  it  is  less  than  3  you  assume  the

accumulation at 3 minus the probability  that x equals 3 minus the cumulation or the

probability distribution function evaluated at the point 1.5 because you to subtract that

mass here. 

So, this would be basically 1 minus probability that x equals 3 is what you can compute

minus this point F x of 1.5 is this quantity a 2 reading off from this label here. This is

how you would actually compute the probability distribution function. So, I gave you the

probability  mass function here because I mean this is basically the probability  that x



takes a certain value this may not be so direct and straightforward,  when we look at

continuous  random  variables  because  first  we  start  with  the  probability  distribution

function  and  the  distribution  function  is  continuous  and  differentiable,  then  we  can

basically  get  the probability  density  function.  So, let  me define what  the probability

density  function  is,  if  the  probability  distribution  function  is  continuous  and

differentiable  then  the  density  function  is  basically  a  derivative  of  the  probability

distribution function and we assume the derivative exist . So, therefore, we can take the

derivative. 
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So,  the  properties  for  the  probability  density  function  are  as  follows,  1  the  density

function; probability density function is nonnegative, right it makes no sense to say that

the mass probability mass function or density function is negative. If there is no meaning

to that negative quantity there because it is a derivative of the distribution function. So,

there is no meaning to this mass which is negative, so it is nonnegative. Then it integrates

the density should integrate 2 1, why because you evaluate. How do you compute this?

This  quantity, this  is  basically  from the  probability  distribution  function  it  is  F x of

infinity minus F x of minus infinity which is basically 1 minus 0 and it is that is why you

get it as 1. 

Now, the  distribution  function  is  linked  to  the  density  function,  if  you integrate  the

density  function from minus infinity  to  a  point  x,  some constant  x  then you get  the



distribution;  probability  distribution  function  evaluated  at  x.  This  is  giving  you  the

probability that the random variable X capital X is less than or equal to some constant

small  x.  Now, if  you  want  to  compute  the  difference  in  the  probability  distribution

functions evaluated 2 points x 1 and x 2, which is giving you the probability essentially

that random variable X is between x 2 and x 1, that can be obtained by integrating the

probability density function between limits x 1 and x 2.

So, these are some basic properties you would have seen all of these, but now in the

context of sets etcetera you will be able to better appreciate what is really happening here

and if you think about the probability density function, so the probability for continuous

random variables, probability at a certain point is essentially 0, I mean that makes sense

because if you shrink this integral, if x 1 and x 2 coincide or x 2 is just epsilon from x 1

and if you just collapse that interval basically that gives you 0 for the probability and

therefore,  the  probability  for  a  continuous  random  variable  the  probability  that  the

random variable takes a certain value is basically 0 and that should be obvious. 
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So,  with this  I  will  sort  of  discuss  some subtleties  between  continuous  discrete  and

makes random variables. So, random variables can be continuous, they could be discrete

and they could be mixed. So, examples the Gaussian random variable is 1 example for a

continuous  random  variable,  then  we  have  the  for  example,  look  at  the  binomial

distribution that is an example of a discrete random variable, sometimes you can have a



mixture of continuous and discrete random variables. So, a mixed random variable I can

give you an example, so for a mixed random variable if you look at the sketch of the

probability distribution function, I can have jumps indicating if is discreet at some points

and then I may have something which is continuous and of course, this has to integrate to

1. 

So, this is an example for a mixed random variable. So, for a continuous random variable

you can just imagine that the pdf is basically continuous, for the discrete case we have

seen an example of a staircase function is where things are discrete. 
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Now, we will try to work out a simple example considering a mixed random variable,

suppose the pdf of a mixed random variable is given as follows. This is uniform from 0

to 5, there is a height some K that I do not know, at 2 I have a mass and impulse, which

is height 0.2, this is delta x minus 2 and at 4 I have another impulse, which is 0.3 delta x

minus 4. Now, under any circumstance the density must integrate to 1. 

So, since density must integrate to 1, so let us look at the integration here. So, this is the

area of this rectangle which is 5 k, 5 is the base and k is the height, 5 times k plus you

have a mass of 0.2 at 2 (Refer Time: 44:10) mass of a 0.2 and another mass of 0.3 at x

equals 4. So, this must sum to 1. So, this implies k is 0.5 upon 5, which is 0.1 and if you

sketch the pdf that would be pretty interesting because let us sketch this, sketch of the

probability distribution function. So, between 0 and 2, I have a ramp because I am just



integrating this rectangle here. So, the I am with a slope of 0.1 I just have a ramp here

and I accumulate a mass of point 2 here on the y axis, then at 0.2 I have a jump of point

2. So, I basically accumulate a mass here of 0.2, I think I can indicate this jump perhaps

through dotted lines. 

So, I accumulate a jump of 0.2 at x equals 2. So, I go to 0.4, now between 2 and 4 I do

not have any impulse. So, I basically keep integrating it, till I accumulate a mass of 0.6

and at 4 I have an impulse with a mass of 0.3's accumulate a mass of 0.3 here and I get to

this point which is 0.9 and after 4, between 4 and 5 just immediately after 4 I just have a

ramp with a slope of 0.1 and then I touch this, this is 1, so this point is 5.

So, this is a sketch of the probability distribution function. So, this gives you an idea, so

at these points it is a discrete and at these points it is continuous, this is continuous and

these 2 points are basically discrete. So, maybe I can put a green color here, indicating it

is discrete and red color indicates it is continuous. So, this is sketch of the probability

distribution function for a mixed random variable. So, hopefully with these basics you

may be able to understand and appreciate the subtle details, when you actually look into

the probability  distribution functions and probability  density functions,  which will  be

useful for your analysis,  further during the course when you have to deal with these

probabilities.


