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Gram Schmidt orthonormalization

Let us get started with this theorem. So, in the in the last module, we learnt that if you

have a set of vectors that are mutually orthogonal, then they are linearly independent, but

it is not the other way around. And using this property, let us see how we can express a

vector in terms of it is coordinates using an orthonormal set. 
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 Let v 1, v 2. So, on till v n be a basis for an inner product space V ok. This inner product

space V, and let v 1, v 2 so on till v n be a basis for this. So, statement of this theorem is

as follows. 

All of these theorems are really not very hard that just easy theorems, the basis set v 1, v

2 so on till v n is orthogonal, then for any x belonging to this space V, you can write this

vector x as x with v 1 take the inner product divided by the normalization value for v 1,

in the direction of v 1, plus the projection of x upon v 2, divided by the inner product of

v 2 with v 2 in the direction of v 2 plus 1 till. The projection of x with the v n divided by

the norm of v n in the direction of v n. 



Now, if the product if the product of v n with v n in the direction of v n right. And if v 1,

v  2  so  on,  till  v  n  or  orthonormal  that  is  their  norm is  a  1.  So,  this  inner  product

essentially is basically right it is the square of the length, and the length is basically 1

square of the length is 1 so therefore, all of this is 1.

So, basically you can write x, in a simple form. So, it is basically the take the projections

or take the inner product of this vector x, with all of these other orthonormal vectors, and

that gives you the scalar component, and then you then take the linear combination of

these inner products, along the direction of these individual vectors right. So, this is the

theorem, the proof is pretty straightforward , but I think before we proceed with the

proof,  I  think  what  you  have  to  understand  is  a  sort  of  an  intuitive  feel  for  this

representation. 

Now, what is happening here is exactly like what we thought about, in the representation

of vectors right that means, we take the projection of the vector, in the to the each of the

bases  and,  then  that  gives  you  basically  the  amount  of  the  length  that  you  have  to

consider, in the direction of the basis. 

So, for example, if you think about 2 i plus 3 j right, if you think about 2 i, plus 3 j,

which means you know your 2 two units in the i direction, and 3 units in the j direction

and these inner products are essentially those units in that direction right. So, this is this

is a basic idea, and now once you think about this in terms of vectors, it is probably not

too difficult to imagine these in terms of functions right.

So, the function an arbitrary function can be written as a linear combination of some

functions, and this is basically linear combination of these basis functions, and you ever

figure out what is the amount of you know what weight is do you give to that particular

basis all right, and that is basically the amount of the length in some measure right an in

terms of inner product of that that function with the basis or that vector with the basis. 

So, throughout this as we think about vectors we have to also think about in terms of

signals as well, and we will see that they are linked with each other, and that is the that is

what we will we will do. 
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 So, the proof is very straightforward very easy proof. So, what we do is we write x in

terms of some components that connect the basis right. So, a vector x can be written as

x ,1 in the direction of v 1, plus x 2 with the direction of v 2 plus so on. Till x n in the

direction of v n right, and this is because basis it is a basis therefore, they are linearly

independent. 

 Now the trick is just take this vector x, and look at it is inner product with each of these

v i right. So, x with v i is basically x i with inner product of v i with v i right, because v i

with v j will just vanish off, because of orthogonality all right. So, therefore, we can

write x in this form which is sum, and say this is because for orthogonality i equals 1 to

n. 

So, now I want to express x i using this equation that I have, this is basically the inner

product of x with v i, inner product of v i with v i, and then in the direction of v i. Now

this can be more compactly written, in this form i equals 1 to n x with v i, in the direction

of v i, if that orthogonal that is v i dot vi is 1, and v i dot v j is basically 0, I mean of

course,  we  assume  that  here,  and  then  we  just  normalized  it.  And  this  is  pretty

straightforward. So, what we have done now we have taken a vector, and in terms of a

orthonormal basis we have expressed this vector, and we can exactly compute what the

coordinates are ok. 



To pretty straightforward result I think what is very important, i sometimes even wonder

how  decart  a  imagine  this,  ortho  orthogonality,  orthonormality  idea  through  this

coordinate geometry, I mean you see a lot of advancement as you think very in very

formal  terms, when you think about linear  algebraic  framework, but when you think

about  really  some  of  these  you  know  very  early  mathematicians,  and  this  sense  of

intuition is something that you should have to be able to kind of realize how to construct

things.

So I mean if you were told, in your 5th grade or 6th grade that this is the reason why

perhaps you have to consider the cartesian plane, you know maybe x y being mutually

perpendicular  right,  mutually  perpendicular  axis.  So, if  you were taught  this  theorem

definitely we would find graphs very hard to even plot a function right, but I think if you

now  you  can  really  appreciate  the  connections  between  orthogonality  linear

independence,  and  then  basically  writing  this  in  terms  of  coordinates;  so  with  this

theorem. 
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We will now proceed to an important step called the Gram Schmidt Orthogonalization.

So, what is the motivation for this for this procedure right, some given you I am given a

bunch of signals, and I want an orthogonal basis to represent the signal in terms of the

basis signals, or basis functions or going back I give you a bunch of vectors. And I want



to get a basis for to represent any vector any vector in this in this set, right some of them

could be linearly dependent, some of them may not be linearly dependent. 

But I those that are linearly dependent, somehow I want to figure out to express them in

terms  of  a  basis.  So,  with  this  motivation  we develop  this  notion  of  Gram Schmidt

Orthogonalization  procedure,  which  is  very  useful  um  to  basically  construct  an

orthogonal basis for a vector space, or an orthogonal basis for a signal space ok. So, the

motivation  is  construction  of  an  orthogonal  basis  for  a  vector  space,  or  possibly  an

orthogonal basis for a signal space. 

 So, let us suppose where given vectors x 1, x 2 dot x n. So, here is a procedure what we

could do, and where we could start actually towards getting an orthogonal basis for v. So,

let us start with this vector, let v 1 with this vector basically v x 1, I will talk about

normalization later on, but let us just think about orthogonality, and get this intuition, and

then we think about this more rigorously. 

So, v 1 this vector is basically x 1. So, I give you 1 vector right, what is the basis for that

vector itself right there is nothing more. So, therefore, I can say v 1 is x 1. Now v 2 is I

am given another vector from this set from this pool I pick up this vector x 2, then I

project x 2 in the direction i x 2 with v 1, in the direction of v 1. 

So, what exactly is happening here is basically I am removing that component of I am

removing that component of the vector in x 2 in the direction of v 1. So, think about this

intuition, I have i j k usually orthogonal, if I do not if I want to get the direction of I want

to remove that in the direction of i, I want to remove that in the direction of the j. So,

basically I have to remove all these pies to get what I really want right. So, that is that is

the very simple idea behind this, this construction and let us see how this works right.

 So, then I go with v 3, this is x 3 minus take x 3, take the inner product x, we take the

inner product of x 3 with v 1, and remove that component, take x 3 with v 2 normalize it

remove this in this comb in this direction of v 2 so on, right.
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And if you do this for v n you have x n minus sum i equals 1 to n minus 1 x n minus x n

with v i, take the inner product of x n with vi, vi with vi, in the direction of v i right. So,

to remove all the n minus 1 components in their respective directions, and that is what

you have right.

So, the claim is the set v i, i equals 1 to n forms an orthogonal basis for this vector space

V, and if we normalize, it forms an orthonormal set right, if you normalize this it forms

an  orthonormal  set.  So,  I  will  leave  this  proof  as  an  exercise.  So,  the  idea  is

straightforward  I  already  gave  you  the  idea  you  can  try  this  with  straightforward

algebraic proof to work this out, else try alternative methods such as induction logic to

show this procedure is correct. 

But before we sort of wrap this just get a picture of why this should work right, I mean if

say if you just. Even just routinely work through the algebra, take the inner product of v

2 with v 1 all right. So, you have x 2 with v 1 minus this thing right, and then v 1 with v

2 with v 2 with v 1, v 1 with v 2 is basically you know you want it to be 0 it is going to

vanish there right. 

And then so you will have v 1 with so v 2, with v 1. So, this is x 2 with v 1, minus this

component v 1 with v 1 so, v 1 with v 1 this would cancel, you will have x 2 with v 1, x

2 with v 1 and which is basically 0 right, which is straightforward to think through. 



So, I will leave this proof to you. So, the idea is as follows I give you i j k so on that are

all mutually orthogonal if I if to start with so, the idea is if I want k i have a remove i,

and j, and if hired i and j together and I do not want, I have removed that component in

the direction of i that exactly is the idea here right. So, the proof is very straightforward,

I will leave this as an exercise homework exercise the solutions would be supplied. 

To prove this claim, by any of your favorite methods, so we will just revisit an example. 
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Just for the sake of a numerical exercise. So, consider the following vectors in R 2 just 2

dimensional vectors, so, I have 3 2 is 1 of them 4 1 is another. So, if you want to get an

orthonormal  set,  we  just  follow the  Gram Schmidt  Orthogonalization  ideas.  So,  we

basically start with v 1 v 1 is my x 1, let us do this the orthogonality, and then we have a

normalized later right.

We start with this vector which is 3 2, and v 2 is basically x 2 minus the inner product of

x 2 with v 1, upon the inner product of v 1 with v 1 in the direction of v 1. So, if you just

work out the numerics, this is vector 4 1 minus, if you work out this math. 

It just happens to be 14 upon 13 times the vector 3 2, and you can just verify that v 1

with v 2 is 0 just for the sake of it, and you land up with the basis e 1 is 1 upon root 13

times this vector 3 2, and you have a root 13 here because you have to normalize this. So,

that this vector is of length n this e 1 is normalized right.



So, therefore, it is 3 square is 9 2 square is 4, 9 plus 4 is 13, and that is where you have

this, root 13 factor, and e 2 is similarly 1 upon this vector is 10 upon 13, and minus 15

upon 13, you just have to take the sum of the squares of these 2 components ok.

So, this is basically completion of the gram Schmidt orthogonalization procedure. So,

this is a very important step because at this stage given a set of vectors that are possibly

linearly  dependent,  we can  through  construction  come up  with  an  orthogonal  or  an

orthonormal  basis  for  this  collection,  such  that  any  vector  in  this  collection  can  be

expressed in terms of this orthogonal set or this orthonormal set right, and orthonormal

set is very important  because,  we can get the coordinate  representation of the vector

clear. So, with this in mind we can start off with a signal processing exercise and we are

we have all the background n now from our linear algebra, and vector spaces.


