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Hilbert space and linear transformation

So, I would also like to briefly mention about Hilbert and Banach Spaces.
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And we will deal with these Hilbert Spaces extensively in signal processing. So, we will

see what the definitions are. A complete normed Vector Space is a Banach Space and a

complete normed Vector Space with an Inner Product. So, a complete normed Vector

Space with an Inner Product, this is called a Hilbert Space. 

So, let us see some examples as to as to what we mean by this ah. So, VS, a Vector Space

by itself is not endowed with a norm. So, we have to bring in some notion of norm to this

vector space.

Then, it  becomes a normed vector space and the idea of completeness is if we think

about the limit of the sequence right; limit of this function or limit of that of the that

vector limiting vector that has to lie within the space. If it lies within this space then, it is

complete; otherwise, it is not right.



A good example of this is the Space of all continuous functions call it C over the interval

a comma b forms a Banach Space under L infinity , but not for Lp P less than infinity as

some sequence of functions may not have a limit. 

 So, let us see this carefully right.
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To some sketch let us think of f n of t is basically 0. t less than minus 1 over n and it is nt

upon 2 plus one half in the interval minus 1 over less than or equal to t less than or equal

to 1 over n. And this is 1, when t is greater than 1 over n.

So, you look at between minus 1 over n and plus 1 over n. This is basically what you

have and this is a sketch of this function fn t and if you look at the limit of this function.

This is basically a discontinuous function and since, it is a ‘discontinuous’ function, this

does not belong to the space of all continuous functions. So, this is a good example for

the case where, the completeness property is not satisfied right.

So, now if it has to be a Hilbert Space, it has to be a Banach Space endowed with an

inner product. That means, if you take product of these two, I mean you should be able to

define this inner product function. If is you cannot define; then, there is a trouble right.

So, if it is endowed with an inner product; then, it becomes a Hilbert Space and we will

see extensively how these Hilbert Spaces are useful for us in various signal processing

applications ok.



So, this basically sets us pretty much into various notions of these spaces in you know

basically  starting  with vector  space,  endow endowing the vector  space with a  norm.

Then, getting into the inner product all right and then, sort of extending these to the

notion of what a Banach Space is and what a Hilbert Space is? I mean this is sequential

flow.
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There are 2 other interesting spaces that we are interested in. One is basically Orthogonal

Subspaces. We will see what the definitions are. Let S be a Vector Space. Let V and W be

subspaces of S. 

Now V and W are Orthogonal, if every vector v belonging to the space V is ‘orthogonal’

to every vector w belonging to the space W that is the inner product of v with w is 0.

And we might want to construct such orthogonal subspaces because we want them to be

distinct  right  and  this  property  we  will  see  where  and  how  we  can  construct  such

orthogonal subspaces etcetera when we deal with wavelet transforms and so on. So, all

this we are studying here will be basically applied, when we when we when we when we

study transforms and see how we can create such sub subspaces.

 And there is also another definition for orthogonal complement. For a sub set V of an

inner product space S, the space of all vectors orthogonal to V is called the orthogonal

complement. 



And it is denoted by V perp. Take a sub set and let that be the space of vectors and if it is

and the space of all vectors which are orthogonal to this V. They are basically called

orthogonal complement given by V; V perp.

 So, these are basically the definitions and with this we should be ready to construct such

spaces. I think the goal in signal processing is now, we have an intuition. What is this

vector space? What it could be endowed with? What properties we want to study in this

vector space? 

And from which we want to bring in this notion of norms and an inner products and so

on and so forth.  And our goal really  would be to construct  such spaces that  is  very

important and we will see this, when we when we go into in to more advanced lectures. 
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So,  basically  let  us  look  into  Linear  Transformations  and  some of  the  some of  the

definitions associated with these maps. Let, L be defined as a mapping from X to Y and

basically L is a transformation going from 1 vector space to the other vector space over a

same scalar field R. 

This transformation is a linear transformation, if the following properties hold. L of alpha

x for some x belonging to this space X is basically alpha times L of x; the mapping of

this vector x under this transformation. 



And then, L of x 1 plus x 2 is basically L of x 1 plus L of x 2 right. Let us call this is a,

this is b. So, using a and b L of alpha 1 x 1 plus alpha 2 x 2 is alpha 1 l of x 1 plus alpha

2 L of x 2.

Now, can you just recall, the superposition principle that we just started off when we

described linear systems in one of the early review lectures. We just assumed something;

we just said this is basically a linear system if it satisfies these properties.

Now if  we define  this,  formally  like  this  to  get  into  this  notion  of  what  this  linear

transformation is over 1 vector space and you know it is basically transformation which

is acting on 1 vector space which transforms these vectors into another set of vectors in

another vector space right.

And that we saw, this is as a mapping. Now using this notion of transformation we can

really appreciate what our definition of linear you know linearity was in systems theory.
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Alpha is a scalar. Now, keeping this in mind, if X is the set of Fourier transformable

functions. What all functions can have a Fourier transform. Let Y be the set of Fourier

transforms of elements in X.

So, let X be the set of all Fourier transformable functions and Y be the set of all Fourier

transforms of elements  in  X. So, basically  F is  basically  this  map from X to Y and



Fourier of x of t is given by this integral minus infinity to plus infinity x of t e power

minus j omega t dt right.

Check if this mapping ‘F’ is linear? And you can do this for Laplace or V transforms and

so on and so forth. So, you will get an idea, what this is about? And there are a few other

Definitions.
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 Is something called the Range space of L which is given by R of L which is a set of all y

which is L times x for every x belonging to this space X.

This  is  the  range space.  Similarly, we have  something  called  the  Null  space  of  this

transformation which is noted by N of L which is a set of all x belonging to X such that

Lx is basically this 0 vector and Null space of an operator is called the kernel of the

operator. These are some definitions.

So, now, given some linear transformation you can figure out, what the range space is?

What the null space is and you can examine some of these properties? So, I think with

this we are we are sort of set in terms of all the essentialities, we need from linear algebra

towards this course.

So, this is basically sort of a quick review that we sort of had from linear algebra because

this itself this topic of linear algebra itself is a semester long lecture series right. And

here we just we are not doing linear algebra course here, but just enough of that which is



required for us to set the phase for this course. And then, we will extensively use what all

we have studied so far in the rest of the lectures.


