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Lecture – 17
Linear independence of orthogonal vectors

In this lecture we will learn more about orthonormal vectors and inner products. Now,

with this we are set to another important result and we state this as a theorem, if vectors

P1 P2 so on till Pm are mutually orthogonal. They must be linearly independent. So, I

think before we delve into the details of the proof of the theorem, I think we have to

philosophically ask this question what really why we need this result right. If you were to

go back to your middle school as you are plotting these graph sheets and coordinates

have you ever wondered why your x y axis had to be at 90 degrees to represent these

points?
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I could also start with my basis which is I and I plus J and then still get the span of all the

points,  but  what  was  it  that,  what  was  it  that  made  us  look  into  these  mutually

perpendicular axis to represent coordinates. So, this is a philosophical question that we

have to ask now and what we routinely did in our middle school, you know plotting these

coordinate axes and then basically looking at these graphs and etcetera. We have to think

about  it  in  a  more  deeper  context  when we have  to  get  into  signal  spaces  and is  it



possible to think about signals as points in a signal space such that the coordinate axis

are essentially mutually orthogonal and this is the idea where we are sort of drive into

and therefore, we need this result ok.

And this will help and if it  is mutually orthogonal then they are linearly independent

therefore,  you can basically and if it  if  it  forms if it  spans the space and its  linearly

independent and spanning the space, then basically we can represent all the points in this

in this space. So, and that is basically the philosophy behind how we want to approach

this ok. So, let us prove this theorem. It is probably not too difficult standard proof . So,

we start with the supposition that they are linearly dependent and then we will try to

prove this by a contradiction right.

So,  let  us  suppose  these  vectors  are  linearly  dependent.  So,  if  they  are  linearly

dependent , there are a set of coefficients a1 a2 so on till a m , not all zero, this is very

important if all of them are zero then of course, there is a there is an issue here because it

becomes linearly independent because since they are linearly dependent, let us assume

that there are set of coefficients a1 a2 so on till a m, not all of them being zero such that

sigma i equals 1 to m a i Pi , there is a zero . So, let me call this equation 1.

Now, the trick here is basically take the inner product of all these Pi s with equation 1

and come up with some simplified set  of equations  assuming that  they are mutually

orthogonal. And then, see if our assumption that they are linearly dependent is violating

or not right. So, now, we take the inner product of 1, of this equation 1 over each of a

over each Pi. So, when you take 0 with Pi, this is basically Pi right. So, basically what I

do is sigma i equals 1, I will just take 1 case and it is very easy for you to think about the

rest , take it with P1 , this is basically 0 with P1 . Inner product of 0 with P1 is basically 0

and this quantity if you simplify, now they are mutually orthogonal and if you take P1

with P2 it is 0, P1 with P3 it is 0, so on. So, therefore, you will be only left with a1 here.

So, this means a1 and the inner product of P1 with P1 has to be 0 right. Now, once you

do this trick you will you will you will you will you will do you will get an idea for the

rest of it.
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Similarly, a2 with a2 times, inner product of P2 with P2 equals 0, dot dot dot a m with

inner product of Pm with Pm is 0. Now, these Pis, i equals 1 to m they are not equal to

this null which is an important condition, but all of them are nulls right, that is each of

these  Pis,  i  equals  1  to  m are non 0 which  means  now we have derived the  set  of

equations a1 with inner product of P1 with itself is 0, then we have these equations a2.

So, on till am all of these have to be 0, but we said that these Pis are essentially non 0;

that means, their inner product is not 0, which implies inner product of Pi with Pi is not

equal to 0. This means, the only way it is possible is all of these have to be 0. Now, this

means we are coming into the condition where they have to be linearly independent,

which  means  Pis   which  is  basically  a  contradiction  to  where  we  started  off  and

therefore, this is done ok.

So, this is an important result,  I think which you should not end it the proof is very

trivial, but I spent quite a bit of time in this proof because you have to get this picture

very clear, that if it is mute, if the vectors are mutually orthogonal this implies that they

are linearly independent and the other way round it is not possible is not necessarily true;

that means, if you find vectors that are linearly independent then they are not necessarily

mutually orthogonal. An example of this is basically think about the vectors 1, 1 and 1, 0

right.



These vectors are not mutually orthogonal, but they are linearly independent, but if you

look at the natural basis which is 0, 1 and 1, 0, they are mutually orthogonal and that

implies linear independence. So, now, I think with this you should be pondering in your

mind if I want to construct a basis, what is useful for me? It is easier if I go with the

route of figuring out a set of vectors that are mutually orthogonal and that can span the

space. So, if I can do that, then I get the basis for the space and from which I can I can

represent vectors in that space and it is possible to ensure that these vectors that you can

derive the set of that you can create, a set of vectors that are mutually orthogonal, there is

a procedure for doing that and that we will get into the next step clear so far till here.
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 Now there is this notion of weighted inner products. So, you might philosophically ask a

question, suppose I look at 2 vectors x and y and I weigh them by a weighing matrix W

right. So, I am assuming some matrix w times, x is what I have ok. So, of course, this has

to be this  inner  product  can be defined over  this  can be the inner  product  can be a

function from the Cartesian space of 2 vectors, 2 complexes as well so. In fact, if we

think about complexes then w has to be hermitical matrix, but we will think about this in

the contact context of real, just real entries for this matrix w right.

Let us assume that we are thinking about this. We will not define this in this face by this

weighing matrix. The question is can this quantity x y the weighed inner product be used

as a norm? It is a sort of a natural question that we get right, can this be used as a norm.



The answer to this is it cannot be used as a norm. Simple counter would be basically if

you think about this as a induced weighted norm where you know y is same as x and

then I have x transpose Wx is what I have right and if it has to be a norm this quantity x

transpose Wx has to be strictly greater than 0 for your w for your matrix w right.

And trivially when x is 0, then we know that condition where it for x not equal to 0, for x

not equal to 0 right x transpose Wx has to be strictly greater than 0 for all x and we

cannot guarantee this unless this is a strictly positive definite matrix right and therefore,

this  is an important  counter  case where if  you wanted to extend this  notion of inner

product  or  the  induce  norm  or  inner  product  as  a  weighted  inner  product  using  a

weighing matrix you cannot think about this quantity as a norm . So, I will also leave this

as a sort of an exercise, it’s very straightforward you know to think about it.

Ah suppose I think about this vector x to be some alpha alpha and if I want to consider

this quantity x transpose W x, where this w is given by this matrix a, b , c, d and if this

has to be strictly greater than 0 for every x , x not equal to 0 . Is it true for all possibilities

of parameters a, b, c and d. Now, you just expand x. So, and you take x to be some alpha

alpha here and you multiply by this weighing matrix , if you did this quantity you will

land up with alpha square a plus b plus c plus d , is what you would you would get right.

And this quantity can be potentially 0 even though x is not the all 0 vector. So, if a plus b

plus c plus d is 0 or a combination of this is 0 or a plus b is 0 and c plus d is 0. You know

individually in whatever way you want to simplify various combinations of a , b , c, d to

sum to 0 irrespective of x which is not a null vector, we land up with the induced weight

weighted norm to be 0, which is not what we wanted right.

So, therefore, this is another case to think about, why this weighted inner product cannot

be  considered  as  a  norm and  in  detection  problems  when  you  have  to  deal  with  a

statistical detection under a Gaussian noise assumptions sometimes you will land up with

a quantity in the exponent there you will have to look at some weighted norm of some

random vectors, you will you will encounter these problems are normal to delve into this

class, but if you if you look at look into statistical decision theory there you will land up

with such situations and in such cases this symmetric is really useful to think about , if it

is going to be a norm or not.
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Now, just an aside, can we think about expectation of a random variable in terms of an

inner product right. So, if, let us look at this quantity which is expected value of x square

right it is ah. So, if the expected value of x is 0; that means, 0 mean, random variable

basically expected value of x square x square is basically the variance right otherwise it

is the normal second moment. So, can you think about this as the inner product of x with

x under some measure which is your probability measure right, if you think about I mean

you sort of think about x y variables and I say if I think if I define this to be x y times,

this quantity right this is basically if you think about two random variables x and y and

this is basically the joint density f x y of x y this quantity is basically the joint density of

2 random variables.

And what we are doing here is basically computing the mean, right this is computing the

mean and can we think about this mean as sort of an inner product. If you if you under

this measure right, I mean if you think about the standard inner product you would take

the product of the 2 functions and then integrate them over this interval right, now if you

bring in the notion of probability measure where you define a density function right, can

you think about the function I mean of a basically the expectation of 2 random variables

as some measure of inner product, I mean if x and y a y is x, then you have a measure of

x  with  x  and  variances  is  basically  under  this  measure,  it  is  basically  a  sort  of  an

interpretation of an inner product. Ok with these are some ideas to just ponder about.


