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Lecture - 28 

PID Controller-II 

Good day to all of you, in the last class we had been discussing about the P I D 

controller. 
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We had begun our discussion and started with the integrator as a controller and including 

it into our scheme of the system. We saw in the last class how the integrator behaves and 

or way it gives infinite gain near the DC or the steady state region. It gives the infinite 

gain near the DC of the steady state portion of your response the error is 0 at the portion 

of response near the transients the integrator varies at the higher frequency. The 

integrator gain is much lower significantly lower and therefore, the error is not 0 in those 

portions. So, whenever you have a disturbance, whenever there is a change in the input, 

we saw change in the stepped input and near around the time zone of the step change you 

will definitely see an error in the output. 

As time progresses and system reaches steady state or the DC zone, you will see that the 

error reduce us to 0 because the gain at DC per the integrator is infinite. So, this fact we 



try to understand better by trying to implement it in mat lab simulation environment. We 

will of course use that environment in the discussion today also. 
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If you look at the example that we have taken in the last class we had an example system, 

an example system I have shown here this is third order system you have one pole at s is 

equal to 1 by 0.1 or s is equal to 10 where is another pole at s is equal to 2.5. Another 

pole at s is equal to 0.8, now this third order system is being controlled by a control input 

here. This is coming at the output as the output of the controller and the controller that 

we had been using is just a pure integrator an integrator scaled by a gain k i. So, this is 

what we try to include into the mat lab environment and in the mat lab environment we 

included we controller as a numerator polynomial and the denominator polynomial.  

So, also the plant as a numerator polynomial and the denominator polynomial we use the 

convolution function to do the multiplication of these polynomials. We saw the time 

response of the output where is the one which is fed back the signal is fed back compared 

with the reference input which was a step input. We also saw the frequency response of 

this integrator and try to compare the behavior understand the behavior of this entire 

system.  

So, we shall continue to proceed in this fashion, we shall call the controller from now on 

as the G c the controller transfer function as G c and we shall call the plant or the 

convertor as G p the plant transfer function. So, the close loop transfer function would of 



course be G c G p by 1 plus G c G p and this we will call it as the system close loop 

system transfer function G s and this has numerator polynomial and the denominator 

polynomial n s and d s. So, let us unclutter the screen and just keep these things here let 

me call this as a numerator polynomial and the denominator polynomial. 
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We are going to look at this input step input, we are going to look at the controlled 

output, and we are also going to look at the frequency response of this. We shall look at 

the frequency response of the plant alone and we shall look at the combined frequency 

response of the plant and the controller G c G p together to get an understanding of what 

is happening. So, this system let us incorporate it into mat lab and see how it behaves, 

now let me shift the computer screen to the mat lab environment. 
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Now, we are on the mat lab environment as you can see here let us take a text editor and 

write down these things this is small script exactly what we did in the last class, let me 

mark this and bring your attention. Now, you see here the controller is defined by a 

numerator polynomial and denominator polynomial the controller. Here is an integrator 

we also defining the frequency from 10 to the power of minus 3 to 10 to the power of 3. 

We are getting the controllers frequency response by giving the parameters the 

numerator and the denominator polynomials the controller then as a sub plot plotting as 

semi log plot of the gain verses the frequency. So, this is what we have read we the 

actually perform in the last class the same thing has now been put in to the script file. 

Now, we have here; let me bring your attention to this part of the script. It is the script 

for the plant has the numerator polynomial and the denominator polynomial exactly 

same as what we did in the last class the plant frequency response. Then, sub plotting it 

on the same graph see that we are plotting it on the same sub plot and the semi log acts 

of that one in a different color.  

We use a red color here and we are use a black color for the earlier, then we shall 

combine the plant and the controller transfer function together by using convolution 

convolving the numerator and the denominator polynomials of the plant. Then, obtaining 

the frequency response of the plant and controller transfer function together and again 

plotting it on the same sub plot and we shall give a blue color to that one. So, in sequence 



we shall plot these frequency responses and then finally, we shall try to extract the close 

loop response. We are doing close loop feedback of the controller and the plant 

numerator polynomial controller and the plant denominator polynomial unity feedback 

numerator and denominator which will give G c G p by 1 plus G c G p.  

This is the closed loop numerator and denominator polynomials then let us do a sub plot 

because this is a time plot unlike the frequency plots of the previous ones, this is a time 

plot, this is verses time and for a step response. Yesterday, we just saw how it was how 

the integrator just 1 by s was behaving, today let us start with a small value of gain 0.01 

and this is small value of integrator gain which we are having. 
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We shall run this script as such here in the mat lab work space remembered that we have 

given the name here as example one e x 1 dot n, so we shall just type e x 1. Let me 

expand this, so you get a better this is the integrator minus 20 dB per decade, remember 

that this is not DC, this y axis here is not DC it is not 0 frequency, it is 10 to the power of 

minus 3. So, as it starts going to the 10 to power of minus 6, 10 to the power of minus 9, 

so on this value will start hitting a very large value and that in fact is the plus point of the 

integrator where at DC we want an infinite value to make the error 0 at steady state. 
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Now, we shall see the frequency response of the plant in the red color, so this is the 

frequency response of the plant you see that it is flat of the sub point and then starts 

behaving like low pass filter and being a third order. Ultimately, you will see that it will 

start reducing at rapid rate of minus 60 dB per decade, so this is how the plant frequency 

response looks like.  

Now, let us see the plant and the controller together, so what would happen is that in the 

log scale multiplication of G c and G p is nothing but addition of the log dB amplitudes. 

So, you just have to add the integrator dB gain with the plant dB gain, so you will see 

that at near around the DC of the steady state the plant gain is pulled up. Now, you see 

this is zero line and here below zero which means attenuation the plant gain is pulled 

down, so that is what the modification would happen. 
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You see the blue line, so the blue line is actually getting pulled down up to this point 

compared to the red line, the plant line and the blue line goes up the gain is gain as 

actually increased near the DC. 
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So, if you allow me to expand here, you will see that the blue line is actually increased 

has been pulled up. Then, if we look at the time response you see the time response we 

have given a very low gain is actually very slow, it is now even reached steady state in 



time 10 seconds. So, let us try by increasing the gain k i, let us increase the gain k i by a 

factor of 10 from 0.01 to 0.1 and see what happens. 
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You will see the time response the integrator response; this is the plant response, 

frequency response and the response of the system. You see that it is cutting the zero line 

much further which means the band width has improved. That should get reflected in the 

time response, you see the time in the time response it is already trying to reach unity at 

10 seconds.  

You could further increase the gain, so let us say we double it 0.2 and you will quickly 

see that this is the integrator, let me expand that the system response this is the system 

and the controller response together blue line. The time response we have over shot and 

then it is ultimately trying to stabilize some point later on. So, if you want to view more 

of the time response you can go and change the end time or the final time, here you can 

probably say 50 seconds up to 50 seconds. 
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You can see the response the time response of the system, so like that one can fine tune 

the gains of the integrator to achieve better closed loop response. So, what is said that we 

have done here. 
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 We have the frequency plot and the time plot, the integrator starting from a very large 

value infinite value going down at 20 dB per decade. So, if this were 0 dB this implies 

unity gain if it is 0 dB that implies unity gain and we saw that we could chose any of the 



parallels by choosing appropriately the value of k i. This scaling for the integrator which 

actually cuts the 0 dB line or the unity gain band width at different points. 

So, as k i is decreased you will see the unity gain band width reducing if k i is increased 

you will see the unity gain band width increasing. So, if I increase k i, you will be 

choosing you will be choosing higher and higher band width. Now, let us let us say there 

are some point of time we have these step response, let us say this is the step change that 

i you and the response with the integrator was something like that. The intention now is 

to reduce this error ideally, I would like to have 0 error at every instant of time however 

that is not possible you can have infinite gain, now only at that steady state.  

So, the steady state error is taken care of how we reduce the error near around the 

transients, so let us say we shape the curve in the following fashion. So, let us say at 

around this point the integrator gain with frequency was coming down in this fashion. 

Now, instead of coming down let us let us make a change at this point instead of coming 

down it starts going like this how do we bring this about this is possible by introducing 

that introduce some component. Let us introduce a proportional component or let us say 

in the transfer function write now the controller transfer function G c was k i by s, let me 

go to the next page. 
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Now, let us make G c as K by i s plus another component just a proportional gain, so this 

is equivalent to seeing you have a comparator plus minus you have the reference you 



have the feedback the error e it use to go through just an integrator. Now, you are also 

making it go through a proportional gain and you add it up plus and plus and use that has 

your controller output. 

Now, look at this, if you combine these two you have k i plus k p s by s or if you want to 

simplify it in some form you could say k p s plus k i by k p by s. So, just by adding this 

new component we have introduced in the numerator as 0 in the numerator polynomial 

you will see as 0 coming in to the picture, so what is the character of the 0. 
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So, you have you have such a transfer function, now G c if I take the frequency some 

point of time, sorry some point in the frequency plot space the integrator we saw it just 

keeps going down at minus 20 dB per decade. Now, if you look at the 0 like a derivative 

wherever it comes in to effect, now let us say it comes in to affect this point. This point 

corresponds to corresponds to this frequency of omega is equal to k i by k p the 0 will 

start increasing at plus 20 dB per decade. So, taken together this minus 20 dB per decade 

and the plus 20 dB per decade of the 0 will cancel and you will get a gain which is kind 

of independent of frequency. 
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So, that is what is happening at this point here when we say we just want to make it flat 

like this Independent of frequency. It implies that at this point we have inter post or we 

have introduced as 0 we have introduced as 0 to become active at that point at that of 

frequency. So, which would mean that 0 would start going like that the pole the 

integrator pole contributing minus 20 dB per decade. So, from then on you will see that 

they both will cancel, and then you will have a flat portion like this. Now, what have we 

gained, we have gained in gain remember that if we had not introduce zero at this point 

the integrator, the controller gain would have just dropped like that. 

But now the controller gain is more than what it would have been if we had not added 

the zero understand that if we had not added the zero the controller gain would have just 

dropped off along this line minus 20 dB per decade. Now, because we have added the 0, 

the gain controller gain has now become flat here as you see compare to the earlier case 

as frequency is increasing we see this green arrows are the amount of gain, so this gain in 

gain has a tendency to help the transitions.  

You see that there is no change in the DC portion the DC portion of the controller gain 

remains the same which means this portion of the time is formed is not going to get 

expected. Only the high frequency portion of the gain has been increased compare to 

what it was before. Once, the high frequency portion of the gain is increased, you will 

see as faster as pans in the transition portion of the time response.  



So, we expect that the time response should be faster like that, so this effect is brought 

about by the introduction of 0. We should say the introduction of the proportional part 

the P part of the P I D controller. Now, let us see if we are able to introduce the 

proportional part into the controller in the same controller that we had been working with 

in mat lab, so what will become the numerator and the denominator portion of the 

polynomial. 
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So, we have G c as k i plus k p s by s which is the numerator polynomial and the 

denominator pole for in mat lab. You can say that numerator polynomial is nothing but k 

i where this is the s to the power of 0 term this is the s to the power of 1 term and the 

denominator polynomial is 1 and 0 s to the power of 0 term and s to the power of 1 term. 

So, this becomes our new controller representation in mat lab this is the proportional plus 

integral part of the controller or the P I controller. You have two things to design, choose 

here you have to choose k i and k p you have already chosen and fixed k i. 
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So, you need not touch that, now you need to choose only k p to decide the point of 

introduction point of introduction of the 0 and the 0 is actually decided by k i by k p 

ratio. Now, in the mat lab environment let me close all the previous things now let us 

open that script file, so in the script file we still using the same plant, so we need not 

disturb this portion. These are all the terms of variable controller in plant variables, so 

this portion also will not get disturbed the only place, where we are going to introduce 

change in the controller numerator and denominator polynomials. 
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We also introducing one new degree of freedom which is k p, so let us say k p equals let 

us again start k p with a small value 0.01 and the numerator polynomial becomes k p k i 

is not this what we just now saw. The denominator polynomial is by s, so there is no 

change in the denominator polynomial it remains as 1 and 0, coefficient of s. Now, this 

controller becomes proportional plus integral controller all l's remains same, so let us see 

what we can achieve we can probably try to tune this k p increase and decrease and see 

what the effect is. 
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So, let us run this again x one notice that the change we have this, this is the integral 

portion and somewhere at this point we have introduced a 0 at what point at the point 

where you have s is equal omega is equal to k i by k p. We know that k i is point two k p 

is point zero one k i by k p is nothing but 2 and you see here nothing but 20 and you see 

at around 20 here there is a change in the slope and start going to flat gain at this point of 

time. So, this is precisely what we wanted to achieve that is change in the slope of the 

controller curve. 
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Now, super impose the plant curve there is no change in the plant curve is a same plant 

and together with the plant and the controller. So, you see that the DC portion the study 

state portion will remain more as same, so you will see the consolidated curve taking 

higher value here. Then, start getting attenuated from here onwards that attenuation here 

will be not as much as it had been in the case of the just integrator. Therefore, you have 

now a higher gain at this in this region that is in the higher frequency regions and in the 

time response it gets reflected as better transitions are better dynamics. 
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So, this is the consolidated curve the blue curve and let us say this is the time response 

the time response there is not much change in the study state you probably should absorb 

may be in this regions. Now, let us say we look the time curve at up to let us say 15 

seconds here, so that we assume in we shall we shall change the time response portion to 

give as a response up to 15 seconds, now look at this rise time around 5 seconds. 
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Remember that we shall re execute it by adjusting the value of k p, what happens if we 

change the value of k p. 
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Now, let us go to the white board at this point and see let us see here what happens if we 

change the value of k p we are not touching k i. You are going to increases the value of k 

p what does it mean this point is shifted lower to lower frequency point which means at a 

lower frequency point itself. The flattening will start walker which means the gain is 

actually higher the gain in gain is more. So, one would have gained much higher the gain 

by increasing the value of k p a much higher gain should actually reflect in a better or 

faster response here so this is the effect that we want to actually see. 
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Let us again shift to the mat lab environment, let us increase this k p by a factor of ten we 

make it 0.1 and the re execute the script file. So, you see you see the turn point at which 

it takes a turn is at 2 here and the dB gain is minus 20 dB and in the earlier case it was 

still further down. 
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So, you see that the response is much better with the rise time slightly better than 5, you 

could further increase and keep trying. So, let us increase to that is 1 k p of 1, so you see 

that the point it flattens out was minus 20 dB. Now, it is at 0 dB when it is gain and you 

have the consolidated graph frequency plot blue line. 
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Then, you have, so you see here an nice effect you should notice what has happened 

there is a fast rise here now this fast rise corresponds to quite high gain that has been 

flattened because of the flattening of the controller. So, this portion is higher than before 



so this is rising quite fast here, but we kept on shifting the frequency at which it flattens 

out to the left there by trying to reduce the band width. So, the gain here there is not 

much improvement in the gain the proportional part quickly hands over control to the 

integral part.  

So, the proportional part is coming into the zero effect is coming in to effect only for a 

very small portion of the time here which is corresponding to the high frequency gain. 

Remember that the system is staying in the high frequency part for a very short while, so 

if we expand this the moment there is a disturbance the moment there is a disturbance 

accept change the system is immediately shifted to the high frequency state. The system 

starts gradually coming down to the DC part the study state portion in the time response 

this is the disturbance of the transitions state gradually going towards the study state. 

Now, as the system is going from a high frequency as it ad state towards the study state it 

is passing the proportional part of the proportional effect. Once it has passed into the 

proportional effect and goes into the integral gain effect, you see the integral action 

coming taking over at this point. So, this is the proportional part proportional action 

proportional action loses control here gives hands the battle over to the integral part the 

integral part is taking over from here taking it to a 0 study state error. This is the effect 

that you would you seeing by modifying these parameters, you could probably 

experiment with the many more things. You will see that probably you will get a very 

over shout because of this high gain. 
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Then, quickly it will hand over the control to the integral part which will take its own 

time to again study state. 
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Now, see the consolidated, the consolidated gain integral. 
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Then, you have study portion and then the following portion here, this is basically 

because we have increased the proportional gain much and then it is taking quite a long 

time to stabilize. You will see that it will take it is oscillating around one and it is 

growing and probably becoming stable. This is where you will need to find tune these 

gains to be within the bounce of stability, so you normally will start from low value and 

start increasing it till you are achieve satisfactory step time response.  

Now, we will of course, come to come later on discussed the sequence in which we will 

be increasing the various parameter gains before we stop at the best frequency response 

or the best parameter value to get the best frequency response. That sequence we will of 

course cover later we still have some more topic to cover in terms of the next component 

which is the a derivative component how do we include the derivative part. 
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So, if we look at the controller we have the proportional integral the proportional 

integral, now we want to include one more part. So, let us look at one more aspect of our 

P I D controller and that is the derivative part may be we shall see the effect on the white 

board first you saw that we have the integrator. This is the integrator which is going at 

minus 20 dB per decade and then let us says we have the proportional part. Let us say 

somewhere here we introduce a 0 where is we started with k i by s and do this let us add 

k p and addition of k p introduced as 0 at this point of value k i k p k i by k p.  

Not only that, it change the shape of the gain curve what was going down at minus 20 dB 

per decade it became flat and then somewhere at this point, let us let us do one more 

thing, let us have a 0 at this point. Now, a 0 means one more plus 20 dB per decade 

change, so from minus 20 dB we added a 0 it became 0 dB because we added plus 20 dB 

every decade. 

Now, at this point if you introduce one more zero you will shift the curve, again the 

different loop, now this will be going at plus 20 dB per decade keeps going like that, but 

it cannot keep going like that as omega tends to infinity. We cannot have just plain k d 

into s there will be an s plus you need to have a pole k d into s this not realizable k d into 

s by s plus a is realizable. So, what would this goes on at plus 20 dB per decade at 

somewhere at this point this pole comes into effect.  



Let us say we design such that this pole comes into effect at around this frequency, so 

what will happen what was going at plus 20 dB per decade will take a turn back minus 

take a turn back by minus 20 dB per decade and go in a manner which is flat again. So, 

this is coming into effect at omega equal to a, this portion this blue portion highlighted 

dark and portion is a derivative component.  

We saw that we had we started with three components, one was the integrator 

component, then proportional component and the third component the derivative 

component which has a 20 dB per decade rise. Then, after particular point and frequency 

pole comes into the picture and then behave behaves in a way the gain flattens out. So, 

this is the derivative component and this is achieved by adding this k d s by s plus a, now 

what have we achieved by doing this look at the response.  

So, let us say we have a step input at this point by the integral action at around DC I 

know the integrator is giving a very high gain and therefore, e is equal to 0 steady state 

here, but integrator alone would have given a response something like that. Then, as the 

system the moment there is a dynamics as the system is changing from as agitated state 

towards steady state or DC the gains here and this gains coming to effect. So, the 

moment there is agitation moment there is a transient the gain in the high frequency 

region comes in to the picture.  

They are the once which are trying to pull the response up, so the derivative action which 

is here comes first into play probably pulls the output quickly up. Then, as a system is 

traversing from high frequency to the low frequencies side the derivative hands over the 

batten to the proportional part and the proportional part takes over, and by the 

proportional part gain is much lower. So, it starts to drop and then quickly the batten is 

handed over to the integrator part and you will see it moving in this fashion. 

So, the derivative part quickly pulls it up because the gain in gain is much higher than 

the proportional see the proportional part that gain in gain was only up to this extend. 

The gain compared to the proportional part is so much more in the case of the derivative, 

therefore that would be very fast the action would be very fast however keep in mind all 

these high frequency portions are noise sensitive. So, this can the gain is here can 

amplify the noise in this region and if you give a high value of scale scaling k d or k p.  



It can de stabilize the system are deteriorate the performance instead of making it better. 

So, you have to be cautious while including the d portion and the p portion because they 

are actually gains at the noise sensitive zones of the frequencies pack drum. This tuning 

has to be done specific to the plants specific to each plant to get the optimal performance 

best performance. So, we will see how we go about choosing the various values of k i k p 

k d in the next classes.  

Thank you. 


