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Good morning.  Welcome back to  this  lecture  series  on a Pulsewidth Modulation  for

Power Electronic Converters. We have been you know first in this course we looked at

various kinds of power electronic converters such as dc to dc converters and dc to ac

converters etcetera.

Now, we are looking at this question of pulsewidth modulation which is beginning to

look at this issue of pulsewidth modulation. In fact, in today’s lecture we just going to

see what is the purpose of pulsewidth modulation. Let us what we are going to see in this

in the coming couple of lectures, why do we need pulsewidth modulation that is basic

question that we are going to address here. 

(Refer Slide Time: 00:59)

Now, if you look at this what you need is you have a voltage source inverter and that

voltage source inverter has a dc bus voltage, and the dc bus voltage is being large fixed,

you  know  it  is  not  vary  it  is  not  vary  remain  it  is  fixed  and  it  could  possibly  be

unregulated you mean you can have a dc source this inverter may be feed from a dc

source and that could be a dc source such as an active PWM rectifier or in some kind of



controlled rectifier in which case you know that could be well regulated. On the other

hand it could be simply a diode bridge rectifier with some L filter I mean with the C filter

or an LC filter in which case the dc bus voltage could also be unregulated.

So, what we have is let us you know ignore this regulation or unregulation for the time

being now let us just say it is fixed at a particular value , we want to realize whatever

fundamental voltage we need on the ac side we need certain fundamental voltage let us

call it V1, given certain dc bus voltage which we can call it as v dc, we want to realize

this V1 and who should do this it is the PWM converter should do this now and the

inverter as can produce a range of fundamental voltage for this given v dc.

Now, you want a specific voltage let us call it 60 percent or 70 percent or whatever, now

if the first goal of this pulsewidth modulation is to ensure that the fundamental voltage

has the desired amplitude, that it should have the desired amplitude is one of the first

goals that it you need to control the ac side fundamental voltage. There are other cases

you know you may also have to control the frequency of the fundamental voltage and

there are also both the phase of the fundamental voltage etcetera, controlling the ac side

fundamental voltage given a fixed dc bus is one of the goals of this you know pulsewidth

modulation.  Beyond that  what  happens is  what  you produce on the ac side is  not a

sinusoidal waveform we are trying to synthesize some sinusoid you know of some 50

hertz or whatever modulating frequency, but it is essentially a non sinusoidal waveform.

We are trying to produce ac using dc, it is you know what you are playing basically is not

a sinusoidal waveform we apply various pulses, you may apply positive pulses during

the positive of cycle and negative pulses during the negative of cycle and so on, and it is

not  a  sinusoidal  waveform  it  is  it  has  some  non  sinusoidal  I  mean  it  has  certain

harmonics  it  is  non sinusoidal,  when you say non sinusoidal  it  has certain  harmonic

voltages.

These harmonic voltages are going to result in certain undesirable you know going to

have  certain  undesirable  effects  this  harmonic  voltages  will  cause  certain  harmonic

currents to flow and these harmonic currents for example,  can go about  increase the

losses this harmonic currents will now flow on top of the fundamental current through all

the line side components, it could be a line side inductor are could be an induction motor



whatever  it  could be.  These are going to increase the losses and sometimes the core

losses in those reactive elements and the motor can also increase now.

What happens as an effect of you know the harmonics is that the losses are increased

now and then you in case of motor drive you may also have a pulsating torque what you

normally have in a motor in an induction motor fed from a sinusoidal voltage sources the

torque is steady you get a steady torque because it is a result for interaction of 2 different

fluxes are one flux and a current or whatever and both are sinusoidal and you know if

you look at them through phasors we will deal with all this at a later in a greater detail,

but just to help you grab this. You have 2 fields one pertaining to the stator and another

pertaining to the rotor which both revolve at the same frequency and they have a fixed

phase angle because of the interaction between the 2 you produce a steady torque.

But what could happen in a motor drive is that you have not only a sinusoidal voltage,

but you also have harmonic voltages getting applied them, because of these harmonic

voltages you can have a harmonic fluxes and harmonic currents. The result of interaction

between a fundamental current and harmonic flux are between steady flux and harmonic

currents you get pulsating torque as we will see later now. These are some examples of

the harmful effects of harmonic voltages, pulsewidth modulation what it tries to do is, it

first tries to give the desired fundamental voltage V 1, now this voltage V 1 is achievable

through a number of means.

Now you can you can use this and you select a particular method of producing this V

1which results in certain amount of reduction in the harmful effects  of the harmonic

voltages  now, the pulsewidth  modulation  has it  is  second goal  this  mitigation  of the

harmful  effects  of  the  harmonics.  Sometimes  you  may  say  I  do  not  want  specific

harmonics you can say I do not want 5th harmonic, I do not want 7th harmonic etcetera

that is what is known as harmonic elimination.  Sometimes you might want to reduce

certain harmonic currents in certain range and set  that sometimes you might want to

reduce the pulsating torque. So, your goal could be different, but overall you know what

can be said is you know it aims at pulsewidth modulation aims at reducing the harmonics

and they are harmful side effects.



This is what I would you call as the basic purpose of pulsewidth modulation now and we

go further to see how we control fundamental voltage and how to calculate harmonics

and how to calculate you know the harmonic currents and things like that now.

(Refer Slide Time: 06:30)

So, moment I said you know there is a PWM waveform what these are some examples of

waveforms that we will see in dc to ac converters. The first is basically a square wave

now you can regard this as your pole voltage V RO, that is we look at the pole I mean the

midpoint of the load terminal of a leg and measured it with respect to the dc bus neutral

or the midpoint of the dc bus, this is the kind of waveform and the if the inverter (Refer

Time: 06:58), you know switched in a square wave fashion this is the kind of voltage

waveform you will get this is your pole voltage waveform. 

This is a periodic waveform, similarly you can modulate in several ways some examples

which  we have  already  seen  now you can  modulate  in  all  these  ways  all  these  are

periodic signals now, many of such simple PWM waveforms are periodic signals. So,

what we can do is, we can use Fourier series we want to know calculate how much

harmonic it has, I mean how much fundamental component it has, how much whether it

has a specific harmonic or not and what is the amplitude of that harmonic and so, on,

what we can use Fourier series to do that now.



(Refer Slide Time: 07:37)

What is Fourier series, you may have any periodic signal, you may have a periodic signal

and this periodic signal may have any shape does not matter, but it can be expressed as a

sum of several sinusoids. Let us define the sinusoids a little more closely, these sinusoids

may have certain frequencies. Firstly, it could be 0 frequency or there can be dc now,

next  is  it  can  have  what  is  called  as  the  fundamental  frequency,  that  is  the  same

periodicity as the actual waveform and it can also have harmonic frequencies which are

integral multiples of the fundamental frequencies.

Periodic signal can be decomposed into a dc component, a fundamental component and a

set of harmonic components as indicated here now. So, here what I have given is sum f

of omega t it has been you know the variable instead of time I have taken angle at the

fundamental frequency, here omega is equal to 2 pi upon t where t is the time period of

the waveform in question. So, I we have expressed this as a function of the angel at the

fundamental frequency or what we will call as the fundamental angle. Now, this f is f of

omega t has could have a dc component which is given by the a naught by 2 and it could

have several follow frequency components one of the frequency component could be

omega itself.

If you look at the frequencies 0 is one that is dc, omega is another one 2 omega is 3

omega, 4 omega and so, on, this can have all these various frequencies now. So, Fourier

series helps us expand any given f of omega t into such a series, it helps us calculate the



coefficients of various terms, I mean once we are able to calculate the coefficients of

various terms we know how much harmonic is there. For example, in this term if we can

calculate  a naught we know what is the dc value which is a naught by 2, if we can

calculate a 1 and b 1, we know what is the sinusoidal component, it will be a 1 squared

plus b 1 squared and the root would be the amplitude of the fundamental component here

if you want the nth harmonic component we must try and get this a n b n here.

(Refer Slide Time: 10:03)

Let us move on to see a few more periodic signals now, this periodic signal now these

are all periodic because they repeat over this with this periodicity t. So, now, they are

defined over f of T plus capital T is equal to f of t and t is this period now, one example

that has been given as a wave form ramps up and then falls back and then it is 0 and once

again the same thing begins and this is your time period now this is one example of a

periodic signal. Another example is given here current trices stays flat falls back and then

it is 0 for certain amount of time and this is your time period t and the same thing repeats

now, these are also certain other examples of periodic signals.

In  this  case  you know there  is  a  difference  between  the  previous  one  and  here  the

previous ones were all by enlarge ac waveforms, the ones these were all by enlarge ac

waveforms and they did not contain any dc component at all.  They have a 0 average

value if you look at this it as 0 average, that is if you look at the area under this and the



area enclosed by this they are equal and they have just have an opposite sign, if you look

at the total area within over a cycle it is 0 it has no average value.

But these are certain examples of signals which have some average value, if you look at

the average here this  average is  in the average it  over  the 50 percent  the average is

somewhere like this, if you average it over the entire cycle then it is something like this,

in this case actually 2.5 is the average value of this current that you have now. If you

look at the other case the average value here if you look at you know over this it is also

possible for you to calculate certain average like this. 

So, these are examples of some periodic signals which have non 0 dc values they have

some average values and you know these are actually taken from some dc - dc convertors

these are some current waveforms in certain dc - dc converters there, they always have

certain dc component flowing whereas, in dc to ac converters you know on the when you

are looking at the ac side there are I mean there is no dc component here they are all ac

waveforms,  these  waveforms would typically  have you know fundamental  and other

harmonic frequencies, but not the dc.

(Refer Slide Time: 12:21)

So, that is what I said here, these are examples where they have no average value you

integrate this whole waveform we can consider the first waveform integrated over the

end with respect to d omega t start from 0 to 2 pi and you find that the value is 0 you

integrate this waveform you will also find that it is 0, you can take the third example also



you do that integration you will find that it is 0, that is because these are waveforms on

the ac side of dc to ac converter now, these are all essentially ac waveforms we ideally

we wish that they were sinusoidal waveforms.

So, like you know what we want to see here is some sinusoidal waveform like this , but

then it has several other non sinusoidal components which we cannot help you know

because we are producing ac using dc we are applying basically positive dc pulses and

negative dc pulses to get something like this. So, what we are trying to do is now the

width of these pulses you can see controls the fundamental voltage which is one of the

purpose that we were talking about earlier and now if you look at here this could also

have some ac waveform, but in such you know there is some fundamental component

such cases this is one example where the harmonics could be a little lower, then let us

say fall the pulses were of equal bits, you need to do a complete Fourier analysis to you

know expand them as Fourier series to get the exact magnitudes of how much etcetera

here.

Once again going back to Fourier series these are examples that we have (Refer Time:

13:52) no average value now.

(Refer Slide Time: 13:54)

The  average  is  taken  off  there  is  there  is  no  dc  component  then  let  us  look  at  the

fundamental component now. We want to understand how much, what is the amplitude

of the fundamental voltage. So, if you look at this waveform the waveform certainly has



a fundamental  component  like this.  The fundamental  component  is  a sinusoid of the

same freak periodicity as the original parent waveform right and we are also able to

judge the phase this should be the phase of this sinusoidal waveform, what we do not

know is this amplitude let me call this as V1, we do not know what is that amplitude,

how can you calculate that. 

What we need to do is going by Fourier series this waveform has several frequencies you

know like 0 omega, 2 omega etcetera. We know that for sure that it has no 0, it could

have all these frequencies omega 2, omega 3, omega etcetera it could have it could have

all these frequencies. So, we still do not know, now we are interested in finding out the

amplitude of the fundamental frequency, how do we do that, what we need to do is if you

multiply  this  waveform  by  a  sine  let  us  say  we  multiply  this  waveform by  a  sine

waveform let me just choose a different color here maybe this let me multiply this by a

sinusoid, sinusoid of the same frequency as the fundamental component, why do I do

that if I do that, why do I choose the same frequency as the fundamental component.

Now, this waveform in question has several components let me write the mass V1 sine

omega t for example, plus some other you know let me say certain v n or you know some

v let us say v 3 sin 3 omega t plus so on, it has all these various components. If I multiply

this by sin omega t what happens, you first have this product let me once again change

the color to something a little brighter. Now, let us say this sin omega t and sin omega t

you have, this product gives you sin squared omega t it gives you a sin squared omega t

term.

What you will have is basically this will become V1 sin squared omega t and the second

term will  become V3 sin 3 omega t  sin  omega t  and so on.  So,  you will  get  some

waveforms, if you look at this waveform and in a if you find out it  is dc value it is

average of this term over cycle it will have some dc value.

This average value is a measure of what is your V1 if you consider this waveform for

example sin 3 omega t into sin omega t  you look at  the product waveform and you

integrated over a cycle it is average value will be 0. So, all the other components also

you know their averages all the product terms that you will have here their averages over

cycle will be 0 except for this term, how to get this what you need to do is you given



wave  form  you  multiplied  by  sin  of  the  same  frequency  and  the  sin  can  be  unit

amplitude. 

Now, what is the phase of the sin in this case the sin is defined as sin omega t, now what

we are trying to do in this case is we are trying to do v of omega t multiplied by sin

omega t d omega t and we are integrating this from 0 to 2 pi and this is 2 upon 2 pi this is

what we do to get our amplitude of the fundamental component this is what you need to

do to get this. Now we are multiplying it by sin omega t and because you know this is

what is called as one way to put this is this is an example of what is called as an odd

function. If you extend the wave form to the left side whatever is it is value at some theta

at this minus theta it will have the negative of it, in these kind of cases the wave form has

only the sin components in does not have the cosine components.

So,  for  example,  if  you go through the  previous  ones,  it  will  have  only  this  b  and

coefficients listed in it will not have this, a and coefficients listed here now, this is one,

you know that you have to multiply this by a sin function here now, let us look at it more.

(Refer Slide Time: 18:44)

Let us say the wave form is considered differently you know there are you know the

same voltage wave form let us take it like that, this is the omega t the same plus v and the

same minus v. Now what we have is this is 90 degrees, this is 270 and 180 comes in

between now this is the natural wave form now. So, in this wave form I am trying to see

what is the fundamental component, what should I do now the same way, but what I have



to see is it  is fundamental I can see that it is fundamentally is something like that is

fundamental has it is phase like this it is fundamental is something like that, I need to

multiply this by a unit sine as shown here.

What I do here is I have v of omega t as defined here I multiply this by cos omega t and I

integrate this with respect to omega t from 0 to 2 pi and 2 upon 2 pi, I do this to get the

fundamental amplitude. So, here this is the case of what is called as an even function,

this is a case example of what is called as an even function if you look at the negative

values go along the negative axis I extend this to the negative horizontal axis also you

will see that this waveform is symmetric about the vertical axis. So, vf minus omega t

will be basically equal to vf omega t, that is the kind of symmetry and that is what is

called as an even function.  In such cases the b terms do not exist,  but the a terms a

coefficients in the Fourier series v exist, you go about doing it now.

Let us take it more generally, now let us say my waveform is something like that this

starts at some angle phi and it goes on till some angle 180 plus phi r pi plus phi and this

is 360 plus phi. In such cases if we do not know what this phi is are you know if r we are

unable to see I mean are in any kind of a general waveform, what we need to be doing is

we  need  to  multiply  this  waveform  by  sin  component  by  sin  omega  t  and  do  the

integration over the cycle  and also similarly we must multiply the waveform by cos

omega t also and get this. So, this multiplication by sin and averaging over a cycle gives

one component of that and by doing it you know the other component is available what

are called as a one and b one both these components have to be evaluated and then from

a 1 square plus b 1 square under root will give you this amplitude that is your actual way

of doing it now.

So, what I can see is we can kind of generalize now in the earlier case you multiply it by

a unit sine as shown here, in the second case you are multiplying it by a unit sine as

shown here. Now here what you should be doing you must actually be multiplying it by a

unit sine like this, if you can multiply it by unit sine such as shown here you do your

integration over a cycle or take the average of the product then we will get the amplitude

I mean the average value is proportional to the amplitude of the fundamental voltage. So,

what is being then if the phase is known that is what we are trying to do is you know we

are trying to multiply by a sine wave what is the frequency of the sine wave it is the



fundamental frequency that is the same periodicity as the parent waveform in question

right.

Now, what should be the amplitude of the sin it is unit amplitude, what should be the

phase the sin actually should have the same phase as the fundamental component of the

original waveform. In this case we are able to judge that in certain cases we may not be

able to judge that if we are able to judge that or if we know that then we can multiply it

by  a  sin  who  which  is  in  phase  with  the  fundamental  component  of  the  original

waveform and we can do that integration of the product and get the amplitude out of that

when we are not aware of the exact phase what we should be doing is we must multiplied

this by sin omega t and also by cos omega t you know get those both those a 1 and b 1

terms and from there get the overall amplitude from doing it here now. 

(Refer Slide Time: 23:28)

This is how you determine the fundamental compute of the fundamental component now

let us say how you determine the amplitude of second harmonic. Here we multiplied as

we  saw  a  little  earlier  we  multiplied  this  whole  thing  what  is  within  the  bracket

represents the waveform we multiplied by sin omega t because we were interested to see

whether there is any omega t you know sin omega t term exist we wanted to find out the

amplitude of the fundamental frequency.

If you see that you know there is a second harmonic could be present here, what we must

be doing is we should be multiplying this by a second harmonic sine wave. So, let me



say that I am multiplying it by a second harmonic sine wave like this you know this is a

second harmonic sine wave. Now I want to get the product of these 2 what would be the

product of these 2 like now let me consider some point let me consider certain instant

here let me call this instant as theta and let me consider another instant which is 180

degrees away. So, what do I find these 2 instance, I find that the even harmonic has the

same value at these 2 instance I consider theta and I consider pi plus theta are 180 plus

theta  at  both  this  instances  second  harmonic  has  the  same  value  because  this  pi  is

measured at  the fundamental  angle 180 degrees for the fundamental  is one complete

cycle for I mean what is one half cycle for the fundamental is one full cycle for a second

harmonic, it has the same value.

Now, how about the waveform in question that is the square wave here that we have

considered let us let me take this, the square wave has this value and what is the value

here, here it is plus V here it is minus V. The value at 180 plus theta is negative of

whatever it is at theta. If you take this product, this product is something at theta and

what is the product at 180 plus theta it also has the same value, but it has a negative sign

when you add these 2 these 2 add up to 0. In such a wave this it is not only at this

instance  you take  any other  instance,  you take here and you take  the corresponding

instance there you will always find this is some other theta dash in 180 plus theta dash in

even we looking at some arbitrary angles. 

So,  you  will  find  that  at  both  these  instants  the  even  harmonic  I  mean  the  second

harmonic or any even harmonic for that matter would have the same value, but now the

waveform in question is such that you know it is value is the negative of the other at 180

plus theta is the negative of whatever it is at theta.  So, such a waveform as no even

harmonic you consider the same thing here also you consider this angle and this is at 180

plus theta. This waveform also has no even harmonic you consider this waveform you

consider this  angle and you consider this about 180 degrees later the waveform here

whatever value it has at V of theta at 180 plus theta it has a different value.

Whatever the waveform is at 180 plus theta it is negative of it is value at theta this is

what we observe in all these now and whenever this condition is satisfied there are no

even harmonics.
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This  is  what  we call  as  Half  Wave Symmetry  I  should  caution  new that  you know

symmetries are defined in slightly different terms by various authors and all that. We are

trying to define it for the purpose of course, here when we say half wave symmetry what

we mean is that the wave form in question 4 satisfies this property. If we consider the

wave form at theta and at one eighty plus theta where this angle is a fundamental angle at

the fundamental  frequency then whatever  is  it  is  value at  180 plus theta  will  be the

negative of it is value at theta that is. So, one example of this is the square wave and all

the other wave PWM wave forms there are a couple of other PWM wave forms we saw

earlier also satisfy this particular property.

This half wave symmetry basically means no even harmonics, if you multiply this 180

plus theta here at sin to omega t and sin omega t which is what we just saw right now

you know if you do that integration over a half a cycle or a complete cycle you will see

that the product I mean you multiply this waveform by sin 2 omega t or sin 4 omega t or

sin 6 omega t or anything like that, you will always integrate it over a cycle you will find

that the product has 0 average, it has no even harmonics. So, significance of half wave

symmetry whenever waveform satisfy this condition 180 plus theta is equal to minus v of

theta you have no even harmonics present there.



(Refer Slide Time: 28:27)

Let us look at certain examples of half wave symmetry I mean examples of wave forms

that exhibit half wave symmetry sine wave of course, has half wave symmetry because

sin of 180 plus theta let us say if you want to take sin of 90 degrees is basically minus sin

10 degrees. So, it has that, all the sinusoidal kind of waveforms whatever phase shifts

you consider they all have this cosine whatever you might call, certain other examples

that you can think of or I am just giving some arbitrary examples let us say a trapezoidal

wave this waveform also has half wave symmetry I mean the slopes are equal here there

are certain drawing inaccuracies, but the slopes are actually equal it is sum plus V and it

is sum minus V here. 

If you see here whatever is the value at theta the wave form has the same thing at 180

degrees, this is 360 degrees are what corresponds to t in terms of time and this is 180

degrees or what corresponds to t by 2, this is 180 degrees. So, whatever it is at theta if

you take 180 plus theta the wave form has this property that at 180 plus theta it is value

is the negative of whatever it was a (Refer Time: 29:46). This is one example of half

wave symmetry like this you can go about forming several such examples that you can

go on giving. Let me say shall I draw let us consider a triangular wave this is a complete

triangular wave this is the time t, this is the time t by 2 here also if I see is and I consider

another instant is 180 degrees away whatever is the value here and the value here they

are equal in magnitude, but opposite in sin they just have you know one is negative of



the other the same way if I go another 180 degrees later I will have the same thing the

value will be the same just the sin goes on changing.

This is what we have a half wave symmetry you can go about constructing certain other

examples also which anyway we will revisit see and let me just give you one example of

half wave symmetry you know let me say there is a wave form of signal rises like this

and then it is flat now it falls down, now let us say from here it takes the shape now this

is t, this is t by 2 the signal rises from 0 to v in some you know some duration over some

duration and then it is flat at v till t by 2 then it comes down to 0 and 0 it goes to minus v

with some rate which is same as here except for the sin the slope here and here are equal,

but just for the sin now.

It goes down like this and it is here now is this wave form half wave symmetric is the

half wave symmetric let us try and apply the condition now. So, let us say let me just

change the ink color for some clarity let me consider certain angle theta let me consider

one eighty plus theta. So, whatever is the value here it is the same here, but for a opposite

sin let  me take consider certain other instant let  me consider this instant if I go 180

degrees later I have this. So, what you see the values here and there they are the same

except for the sin that is this value and this value are the same except for the sin.

 This waveform also has half wave symmetry there is something not so symmetric it does

not appeal to the I there is something not so symmetric, we there are some additional

symmetries which will come to a little later, but this waveform nevertheless has half

wave symmetric because it satisfies the property that V of 180 plus theta is equal to

minus V of theta and this waveform you can be very sure that it has no even harmonic

you can try doing the multiplication check it around yourself now maybe if you want you

can try that you multiply this by a second harmonic sine, it would be like this is half

cycle this is one cycle of a second harmonic and this is like this now. 

If  you take  this  green  instant  whatever  is  the value  here  the same value the  second

harmonic has here, but if you look at the original waveform they are opposite in sin. If

you add the product at this instant to the product at this instant that is add the product at

theta to the product at 180 plus theta the sum is 0 this is valid for any theta, on the whole

this reduces to 0. This is an example of a wave form which has half wave symmetry you

know it is could be little deceptive you may the first side many students generally tend to



say well it does not have a half wave symmetry, but it has and you know that is the

property and that is how we define half wave symmetry here and it has the meaning of

having no even harmonic.

(Refer Slide Time: 33:38)

Let us go further now within half is this wave form half wave symmetric yes because

you take this angle at theta and you take the corresponding angle at 180 plus theta you

know one is the reverse of the other. Now what else does it have it also has an interesting

property that you know let me consider the middle of one half cycle of it is you know

fundamental of it is you know let us say it is positive cycle. If I travel some distance

from the middle and travel the same distance from this side the wave form has the same

value  is  on  top  of  quarter  wave symmetry  half  wave symmetry  it  has  this  property

remember this wave form the last  wave form we do here did not have this property.

Whereas, if you look at here you travel to the left or you travel to the right by the same

distance long as you have travelled the same distance it will have you know the same

value, that is what we call as quarter symmetry let me call this as 90 degrees or pi by 2.

So, whatever it is 90 plus theta is the same at 90 minus theta. So, whatever it is at 270

plus theta the value is same as 270 minus theta you also have the symmetry observed

around 270 degrees, from 270 degrees you go some distance to the right or you go to

same distance go the same distance to the left the wave form will have same values.



You can look at certain other examples also before we go into that now from the previous

examples we had constructed we had constructed a trapezoidal waveform some of this

you know this was one example we considered this is a trapezoidal waveform one time

period t, this is t by 2 . The wave form has half wave symmetry as we already seen and

now it also has quarter wave symmetry it also has quarter wave symmetry let us this is

the middle point this is t by 4 and you go some distance to the right goes the equal

distance to the left the value is the same.

Let us say you go further the same it is equal, it is symmetric about this t by 4 or 90

degrees similarly it is also symmetric about if you can just consider one half cycle and

you take the central instant at the half cycle what is that now. So, what is it that we are

saying we are saying that you know these are symmetric about 90 degrees and this is

symmetric about 270 degrees what is special about 90, what is special about 270 degrees.

If you look at the wave form let us say here, where is the fundamental component line,

the  fundamental  component  is  something  like  this,  the  fundamental  component  is

something like that.

So, what we are saying as 90 degrees here and what we are saying as 270 degrees here

they are nothing, but the instants at which the fundamental component is at it is peak the

instant at which the fundamental components at peak.
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Let us say theta p is the instant at  which the fundamental  component is at peak any

instant  at  which  the fundamental  component  is  at  it  is  peak now. If  this  property  is

satisfied in addition to half wave symmetry we call this quarter wave symmetry, let me

just construct one other waveform here let us say the wave form like this is t this is t by 2

and this is t by 4 t by 4 and these values are let us say if it is V1, V 2 and these are the

same values with negative sign minus V1 and minus V2. 

This has half wave symmetry and also has quarter wave symmetry how do we say that,

you consider this instant theta you consider 180 degrees away or t by 2 away. So, what

you have it is the function as the same value, but for opposite sign that is half wave

symmetry it has no even harmonic, on top of that you look around this point you go

some distance and you go the same distance on this side you find the values to be equal,

this is quarter wave symmetry. 

Someone can ask now well what is the significance of quarter wave symmetry in the

significance of half wave symmetry is that you know there are no even harmonics what

is the significance of quarter wave symmetry, one answer to this question is if you have

half wave symmetry as in any of these cases and if you want to find out the fundamental

amplitude what you normally do is you carry out an integration from 0 to 2 pi instead

you can only do an integration over 0 to pi and you can take this factor to be 2 upon pi,

you can let us say f of omega t you multiply this by sin omega t d omega t and you do an

integration to get the fundamental component you do not have to do that you know if

wave form as half wave symmetric you do not have to consider the wave form over 0 to

2 pi you can consider it from 0 to pi or any from any theta to pi plus theta you must

consider one half cycle of the waveform you can calculate an average over that, that is

one of the advantages now. 

It reduces your calculation if you have quarter wave symmetry what you can further say

is you need to consider only one quarter for example, you can only consider this quarter

and you have this V of omega t defined only over this quarter that is 0 to 90 degrees and

you perform an integration that is V of omega t multiplied by sin of omega t this is

integrated with respect to d omega t starting from 0 to pi by 2 and then it is 2 upon pi by

2 or 4 by pi this will give you the value.



So, this spares you the trouble of defining V of omega t from 0 to 19 or that what you

need to do, but if you want to care you know use do the calculation or entire cycle you

have to define V between 0 to 90 which is some equation, you have to define V between

90 to 180 it is another equation this is another straight line, if you have to define V

between 180 to 270 it  is yet another equation between 270 and 360 it is yet another

equation.

If you have half wave symmetry you do not have to define the wave form over the entire

cycle we can just consider one half cycle do that if you have quarter wave it is enough if

you define the wave form just from 0 to 90 degrees and you perform this integration over

0 to 90 degree you can come up with your component.

The same thing is possible for any nth harmonic component also if for nth harmonic

component you are going to multiply this by certain sin n omega t and you going to do

this, your calculation burden reduces that is one of the advantages that you might have

with quarter wave symmetry. Then what could be the other one like you know what are

the significance is what we have been talking about now what you can say is in a wave

form that lacks quarter wave symmetry.
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We may be we should first look at some examples where you have half wave symmetry,

but no quarter wave symmetry of course, one of the examples I had already constructed,

this is a wave form which has half wave symmetry, but no quarter wave symmetry. Once



again to make my point clearer I would say you consider this theta and you consider this

pi plus theta the values you look at the values, one is the negative of the other, it has half

wave symmetry. 

But if you look at quarter wave symmetry you look at 90 degrees you take t by 4 I do not

know where it is 90 degree is you know strictly speaking, but you see anywhere from

here the wave form is  not  really  symmetric  the waveform is  not  symmetric  about  a

particular line here, this lacks quarter wave symmetry.

In such cases what happens is it is a little difficult for us to judge where the fundamental

phases in a previous example let us say if the same thing happens to be a symmetric

trapezoidal wave. We very easily say that the fundamental component is here, we say

that this is the fundamental component the phase of the fundamental component is clear

to us whereas, the phase of the fundamental component is not very clear to us and in

cases where there is quarter wave symmetry wherever the fundamental has 0 crossing the

harmonics will also have 0 crossings the harmonics will also have you may have another

harmonic the harmonic will have a 0 crossing here like this whereas, where there is no

quarter wave symmetry wherever the fundamental has a 0 crossing the harmonics need

not have their 0 crossing that is another issue it gives you certain information about the

phase of the harmonics. They are now whenever the fundamental crosses 0 the harmonic

also crosses 0 maybe you know from negative to positive or positive negative, but they

also cross there is yet another thing that you have when you have you know when you do

not have quarter wave symmetry. 

This is one example that I gave to show that you know waveform could have a half wave

symmetry and thereby you know have no even harmonics, but still not have quarter wave

symmetry. I would give another one other example this is a waveform this is time t this

waveform  somehow  looks  nice,  but  has  no  half  wave  symmetry  if  you  consider  a

particular instant here and you consider the next instant here this is not the negative of

the other this has no half wave symmetry. This is not basically an example of half wave

symmetry, but no quarter wave symmetry this has no half  wave symmetry this is an

example of half wave symmetry, but no quarter wave symmetry this is an example of

both half wave symmetry and quarter wave symmetry. 



So, you can certainly construct various examples let me just take a triangular case let me

say the waveform goes like this and then comes back like this is time t and it continues,

this  is  t  by  2.  If  you  take  any  instant  like  here  you  consider  some  instant  and  a

corresponding instant half period away the values are one is the negative of the other. So,

it  has  even I  mean  it  has  half  wave  symmetry  and  has  no  even  harmonic,  but  this

waveform once again lacks quarter wave symmetry.

These are some examples that you can really think of and as I mentioned earlier this

definition slightly vary I know some authors tend to use different definitions now that is

why I reemphasize you know for the purpose of this course you will define quarter wave

symmetry as here and half wave symmetry as here that is V of 180 plus theta as minus V

of theta in the wave form satisfies that property that is half wave symmetry and if we

have something like V of 90 plus theta is ninety minus theta or more generally V of theta

plus theta is equal to V of theta P minus theta, where theta P is the instant at which the

fundamental component is at it is peak maybe the positive peak or may be the negative

peak theta P is the instant when the fundamental component is at it is peak this is theta p

and this is also a candidate for theta P.

Then we call this as quarter wave symmetry if we have quarter wave symmetry over on

top of half wave symmetry then what we can say is the wave form not only has you

know you we can say that it has no even harmonics and you can say that you know you

need to consider only one quarter of the waveform starting from one 0 crossing to the

peak for example, or any of the 4 quarters like this of the basically the fundamental cycle

to do your PWM calculations you do not have to define the entire waveform over the

entire  cycle  it  is  enough if  you define  it  mathematically  over  one  quarter.  So,  your

calculation  burden  simplifies  and  you  can  say  something  about  the  face  of  all  the

harmonics whenever the fundamental cross is 0 the harmonics also cross 0. These are a

few things that you can say when you have quarter wave symmetry to now. 
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Now this is all about you know a kind of a review of Fourier series. So, that we can use

Fourier series effectively to calculate the fundamental voltages and harmonic voltages of

a several different you know PWM waveforms. The next issue is when the harmonic

voltages  are there what are their  effects  is  what we are trying to see now what gets

supplied to an induction motor for example,  you know like a an induction motor fed

from voltage  source  inverter  is  not  only  the  sinusoidal  fundamental  component  also

harmonics get fed there. 

Let us say we consider only the fundamental component if you see only the fundamental

component  it  is  a  sinusoidal  quantity, the fundamental  component  sees the induction

motor as it is fundamental equivalent circuit. So, which as the standard things this is your

you know rotor stator winding resistance and this is the stator leakage inductance and

this is the magnetizing inductance and you have a rotor leakage and then this Rr is once

again the Rotor resistance and s is the slip now. 

This Rr by s can be divided into 2 parts as Rr and the remaining the Rr alone stands for

the rotor resistance and the remaining part stands for the mechanical power developed

the whatever power is dissipated through this resistor is equal to the mechanical power

developed by the machine now. This is an equivalent circuit what do we mean by that,

when applied you know when some fundamental voltage is applied the current drawn by

the machine is equal to whatever the this fundamental circuit draws the same amount of



current now that is there is a you know the terminal relationships are the same now for a

certain  amount  of  fundamental  voltage  whatever  is  the  current  drawn by  the  actual

machine is the same as what is drawn by this circuit. 

So,  this  circuit  gives  us  a  measure  of  what  is  the  stator  current  and  what  is  the

magnetizing current and what is the rotor current all  these measures can be obtained

from here now and we can also see how much power gets dissipated here and from there

you can also come up with how much mechanical power is developed and etcetera. So,

this is the fundamental equivalent circuit the fundamental voltage the inverter voltage

has fundamental as well as harmonic components the fundamental component c is the

machine as some such equivalent circuit here where the slip s is given by whatever is

your synchronous speed omega s minus omega r divided by omega s. So, omega s is the

you know synchronous frequency that is if you apply the stator frequency like 50 hertz

or, the revolving magnetic field revolves at it is synchronous frequency which is decided

by you know the frequency of the applied  voltage and the number of poles there is

something like that. 

This is the synchronous speed the machine will also run the synchronous speed if the

machine is not loaded, but you know any machine as you know I even under the so

called no load condition has some amount of loading on that and when you actually load

it what happens is there is a slip the rotor speed is a little lower than the synchronous

speed . So, that is what you get by the term omega s minus omega r that is normalized

with respect to omega s gives you the slip. So, slip is 0 under no load condition and the

slip has some rated value of a few percentages something like 5 percent or, when it is

under rated condition many typical machines now. 

So, what happens is the slip is really low and therefore, the term Rr by s is significantly

high that is what we have right, we move on.
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When  we look at  the  harmonic  voltage  let  us  say  some instead  of  the  fundamental

component some nth harmonic voltage may be the 5th harmonic or may be the 7 th

harmonic is applied now. So, what happens now in this case you as you find the slip the

synchronous speed is higher now the fundamental has 50 hertz, the 5th harmonic is 250

hertz,  the 7 th harmonic is  350 hertz  and 5 th harmonic also revolves in a direction

opposite to that of the fundamental and you know the 7 th harmonic revolves in the same

direction. 

The synchronous speed to start with is not omega s, but it is n times omega s where n is

the harmonic order and the relative speed between the synchronous speed and the rotor is

now it could be n omega s plus omega Rr minus omega r, it is n omega s plus r minus

omega r. If it were the 5th harmonic for example, this omega and the synchronous the

revolving magnetic fields that the 5th harmonic produces are in the opposite directions.

So, the relative speed is n omega s 5 omega s plus omega r if it were the 7 th harmonic

then the  7  th  harmonics  revolving magnetic  field  and the  rotor  revolve  in  the  same

direction it will be 7 omega s minus omega r, if this is what you have n omega s plus or

minus omega r and you normalize it with respect to n omega s.

If you do this is almost equal to one because n omega s is much higher than omega r, you

have something which is almost close to one for high values of n. So, what do you have

is Rr instead of Rr by s, now Rr by s is big because s is small therefore, Rr by s is big, if



s is 0.05 Rr by s is some 20 times Rr now it is only Rr, Rr by itself is only the winding

resistance of the rotor which is a very small number, what happens is it reduces slip is

close to one the rotor side resistance is now very low.
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So, you move to the next  point,  what  you have is  you basically  had only the stator

winding  resistance  on  the  rotor  winding  resistance  and  when  you  look  at  harmonic

frequencies this omega l this actually offers n times omega l where omega could be the

fundamental frequency the harmonic frequencies n times omega n times omega l is the

reactance seen by this and n times omega l r is the reactance seen by that, this is the total

reactance. If you see these reactances this n omega ls for example, is much bigger than

the rotor resistance rs and similarly this n omega lr the reactance pertaining to lr is much

larger than rr at the harmonic frequencies therefore, you can ignore those 2 for the point

of view of calculating how much harmonic current is being drawn you can ignore those

two.

If you go further this inductance is much larger than this inductance, this inductance is

practically like an open circuit of the parallel combination of this 2 almost dominated by

this it is almost close to this value of inductance and that is what we get here.
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This  is  what  is  called  as  a  harmonic  equivalent  circuit  of  an  induction  motor  the

harmonic voltage that is applied essentially sees an induction motor as an equal as it is

total leakage inductance. If you want to calculate the I n, this I n is simply equal to your

V n divided by n omega l s plus l r is that right. This is the reactance pertaining to the

leakage reactance, you can very easily calculate that, now you must remember that this

equivalent  circuit  is  mainly  to  calculate  I  n,  you  can  calculate  I  n  considering  the

resistances for example, you can consider the various other things, but I n would not be

significantly different even if you neglected those, but it you know and you use this I n it

does not mean that you know there is no loss this is to calculate once you have calculated

this I n you can use this to calculate your copper loss.

Now the current harmonic what we see is if you take the stator winding resistance like

what  is  indicated  here  what  flows  through the  actual  stator  winding is  not  only  the

fundamental current also several harmonics flow. So, when I n flows that it also produces

I n squared R s will also produce you know nth harmonic current also produces certain

loss. 

The harmonic currents also produce the stator copper loss is given by I squared r and in

fact, the resistance corresponding to harmonics could be a little higher because of high

frequency effects just the skin effect, the resistance could really be higher too, but we

ignore  those  and  you  know  what  we  want  to  do  is  we  want  to  consider  the  same



resistance and want to be able to calculate a value of I n and this is an approximation that

is reasonably valid for calculating I n now this is simplified analysis you can you can add

more and more details to it, but simplified analysis gives you a first cut figure which you

can relay on and also it gives you a certain amount of insight, what is that insight we will

use this extensively the harmonic you know well the fundamental equivalent circuit sees

the machine as impedance and that is a function of slip, that is a function of slip the

machine  is  seen  as  some  impedance  which  is  a  function  of  slip  that  is  fuzzy

fundamentally. 

But if you look at the harmonic the harmonic equivalent the harmonic voltage sees the

machine simply as reactance. If you take a particular harmonic voltage and a particular

harmonic current they are related as though you know their relationship is similar to that

of the voltage and current through an inductor now this is of consequence as we will see

later this will help us in analyzing the harmonic currents very effectively later on.
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Now, instead of a motor drive application if you take it to be a grid connected converter

you know the line side is basically connected to the ac side of the inverter is basically

connected to the mains through line inductor l in that case what you have is VG is the

mains  voltage  this  is  what  we  saw  in  you  know  one  or  2  lectures  back  we  were

discussing front end converters and we were discussing statcom kind of applications this

is the grid voltage and this is the fundamental component of the inverter voltage and this



is the ripple part of the inverter voltage, the ripple has fundamental I mean the inverter

output voltage the terminal voltage has fundamental which is that line frequency plus

some ripple added to the ripple is the sum of all the harmonics.

If  you  want  the  fundamental  equivalent  circuit  that  is  you  want  to  calculate  the

fundamental current drawn through this then you can just ignore the ripple here.
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This is your equivalent circuit now and if you are drawing certain amount of current I

you can even draw a phasor diagram this is VG and this is I that you want to draw and

the oh the drop across the inductance due to I is going to be some j omega Lyou subtract

that this is going to be minus j omega L I and this is what is going to be our V inverter

voltage you can very easily draw when the phasor diagram and you can relate all the

various quantities here, this is the fundamental equivalent circuit.
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And you move over this is the harmonic equivalent circuit which also we saw, here if the

fundamental components of the grid and the inverter do not make any effect here and

you can calculate your nth harmonic current simply using your nth harmonic voltage and

the inductance here. 

These  are  the  models  which  will  help  us  calculate  the  harmonic  currents  in  various

applications when based on those harmonic currents we may be able to calculates you

know these the copper losses and they now we may be able to calculate many other

things. So, what we have been looking at is these is a measure for calculating harmonic

current and from there we will be able to quantify some of the undesirable effects due to

of harmonics that is such as the increased copper loss etcetera.

So, as I mentioned the purpose of pulsewidth modulation is to control the fundamental

voltage and to mitigate the harmonics and their harmful side effects. We have reviewed

Fourier  series  which  tells  us  how  to  calculate  the  fundamental  and  the  harmonic

components and we have developed models. So, that you know given a fundamental

voltage or a fundamental current you know or harmonic voltage we are able to calculate

the corresponding fundamental current and harmonic currents. 

Let us continue this in the next class and get into or business of understanding PWM

effectively I thank you very much for your interest and for your time and your patience.



And I hope that you will you know have continued interest in this lecture series and you

know see you again in the next lecture.

Thank you very much.


