
INTELLIGENT CONTROL OF ROBOTIC SYSTEMS 

Prof. M. Felix Orlando 

Department of Electrical Engineering 

Indian Institute of Technology Roorkee 

Lecture 11: Neural Network based Robot Control 
 

Good morning, everyone. Today, we are going to see a lecture on Neural Network-Based 

Robot Control. The outline of this lecture will be as follows. First, we have the 

introduction to neural networks and the biological inspiration behind ANN, artificial 

neural networks. Then, we are going to see perceptrons, followed by multilayer 

perceptrons. 

Then, we will see multilayered neural networks, their architecture, and then we will 

discuss the principle of gradient descent. Next, we move on to the backpropagation 

algorithm, which is an important algorithm for neural network-based robot control. Then, 

we will see inverse kinematic control using neural networks with an experimental demo. 

And finally, we will conclude our lecture today. Thank you. 

So, we will start with the introduction part. First, we start with biological neural 

networks. The important thing is nerve cells. There are two types of nerve cells: glial 

cells and neurons. The glial cells do not take part in transmitting or receiving messages; 

rather, they protect the neurons, and each yellow structure represents a neuron here in this 

schematic. 

The neuron is a functional unit of the nervous system. There are approximately 100 

billion neurons in the human brain. Now, coming to the neuron structure, the pyramidal 

structure cell, which is a common neuron, is given here. Each neuron has three parts: 

dendrites, cell body, and axon. Dendrites receive information from another cell and pass 

it to the cell body. This message, which it has received, is processed in the cell body. The 

cell body contains the nucleus, mitochondria, and other organelles typical of eukaryotic 

cells. The axon conducts messages away from the cell body. Let us talk about the synapse 

now. 

The junction between a nerve cell and another cell is called a synapse. The messages that 

travel within this neuron are basically electrical actions or action potentials. Messages 

travel within neurons through action potentials, which are electrical signals. The space 



between the two cells is known as the synaptic cleft. In order to cross the synaptic cleft, it 

is required to have the actions of neurotransmitters, which are stored in small synaptic 

vesicles clustered at the tip of the axon. 

Now, let us see the basic functions of our biological nervous system. They receive 

sensory input from the external as well as internal environments, and they integrate the 

received input. Finally, they respond to the stimuli by producing a response or output. So, 

the biological inspiration is that living organisms react adaptively to the changes in their 

external as well as internal environment. And they use their nervous system to perform 

these behaviors. 

Now, the artificial neural network must replicate this behavior. Thus, the artificial neural 

network is basically an approximate model or simulation of the nervous system that 

should be able to produce similar responses and behaviors in artificial systems. Let us 

talk about the fundamental unit of an artificial neural network, which is a neuron. A 

single neuron is called a perceptron. So, it has a structure like this. 

It has a summer structure. The output of the summer goes to a function called the transfer 

function, and then we get an output. The summer receives two inputs. One is the given 

input, scalar input multiplied by the scalar weight, which will become one part of the 

input to the summer, and the other term of the summer is the input 1 multiplied by the 

bias. That is why 1 into b. So, the input that the summer receives is two terms. 

Basically, the first term and that input goes as input to the transfer function. The 

transfer function has this input N, which is as its input argument. Accordingly, 

we get the output A based on the transfer function. Likewise, for the multi-input neuron, 

we have the neuron structure with 

So, many inputs. So, many inputs are connected to the summer through a weight vector. 

So, the input to this summer is basically the W vector, the weight vector multiplied by the 

input vector plus B, which is the bias, the input multiplied by the bias. So, that acts as the 

input to the transfer function, which is F. Thus, a is where w is a vector called 

the weight vector, x is the vector called the input vector, and b is the bias input. 

Now, let us see about the activation function or transfer function. In general, they take 

these forms. One is a linear transfer function, which means the output is the input, which 

is phi of z equal to the given input z, and the logistic activation function is a sigmoidal 

activation function, which takes the range 0 to 1, which has the mathematical expression  



 

Similarly, we have another form of the sigmoidal function, which is hyperbolic tangent 

function,  

which is given by which takes this output range varying from minus 1 

to plus 1. The profiles of the linear activation function, the logistic sigmoidal function, 

and the tan hyperbolic function are all given here. As I said, the linear activation function 

has a linear response. The logistic sigmoidal function will have a sigmoidal curve varying 

from 0 to 1. The tan hyperbolic activation function will have a curve varying from minus 

1 to plus 1 as its response. 

And because the linear function produces output based on the input, which is linear in 

relationship, it is limited in its application to complex neural networks. Whereas, the 

sigmoidal activation function is applicable in complex neural networks, where its range is 

between 0 and 1. Similarly, the hyperbolic tangent function, which is given by the 

expression has its response varying between -1 and +1. Now, coming to the 

fundamental application of artificial neural networks, they are used for classification and 

regression. Classification predicts categorical classes, precisely coming under the discrete 

domain. 

The basket having different colored balls or apples will be segregated based on the colors 

of the apples. So, they are coming under three classes, let us say four classes. So, each 

class 1, 2, 3, 4 becomes a discrete quantity. And in regression, it models continuous-

valued functions. Thus, classification is to identify which class, and regression is to 

estimate a continuous quantity. 

Thus, classification is finding a function that maps input into classes. Thus, class equals 

function of input. Given an input x, it belongs to which class is the output of the 

classification. For example, if you take a hand exoskeleton to move the fingers towards 

grasping and releasing. So, grasping is one class, and releasing is another class towards 

the on-off controller. 

Based on the input subject intention through the brain signal or through the muscle 

signal, the exoskeleton will help elderly human beings to grasp objects or to release them. 

That is the output of classification through neural network application. And regression is 

to find the function that maps input into values. Thus, the value is basically a function of 

the given input x. And here, the robotic example is inverse kinematics control. Given a 



desired position to reach, you get the corresponding joint angle vector of the robotic 

system to reach that position in the Cartesian space. 

And thus, we have a continuous mapping between the Cartesian space and the joint 

space. Next, let us see the architecture of the fundamental neural network. Let us take an 

L-layered neural network. You can see the input layer where the inputs are X1, X2, X3 up 

to Xm, which means m-layered inputs. And we have the hidden layers numbering n minus 

1 hidden layers and 1 output layer. 

The output layer is n. Thus, the hidden layers are l1, l2, l3, and it goes on. Whereas the 

output layer is the last layer, which is l suffix capital n. Thus, it is an L-layered neural 

architecture. Neural architecture. So, we can see here the L-layered architecture consists 

of an input layer of source nodes, L minus 1 hidden layers, and an output layer which is 

the Lth layer. If it is a three-layered network, the third layer is the output layer, and two 

hidden layers are there, and one input layer. 

The synopsis of these notations used to represent a multilayer neural network with L 

layers is given as, let X be the m cross 1 input vector and Y be the output. We can say, 

instead of Y, we can say it is O, O being the output, small o. And Lk, where k varies from 

1 to L, is the index for representing a neuron in the kth layer. And W L K L K minus 1 

represents the synaptic weights connecting the L Kth neuron of the Kth layer to the L K 

minus 1th neuron of the K minus 1th layer. Which means that W L 1 L naught implies 

the synaptic weights that connect the L 1 neurons to L naught neurons. Now, let us see 

the principle of gradient descent. 

Here, we need to calculate the derivative or the gradient of the error with respect to the 

weights and then change the weights by a small increment in the opposite direction of the 

gradient. Thus, the rule here is  

So, in this profile between the error function and the weight vector, we need to find the 

optimal weight vector where the error function is minimized. So, we have here the 

negative slope and the positive slope in this direction. So, when we are here 

We have to increment delta W positively. When we are here in the W, let us say initial W 

is here, then we have to go towards this point for this optimal value and hence delta W 

here is decremented. So, for delta W, we take this expression minus eta into dou E by dou 

W, where dou E by dou W is a slope. So, here if you want to do delta W, it must be 

positive when we start from here to reach the optimal value where it corresponds to the 



minimum error function or the cost function. So, here it must be positive whereas the 

slope is a negative slope. 

So, delta W being minus eta dou E by dou W becomes minus eta into minus value 

because of the negative slope. So, it becomes a Thus, starting from here leads towards a 

positive increment of delta W. Similarly, when we start from this point, delta W is 

decremented towards the optimal value of W. So, for both cases, this rule obeys where 

eta is the learning rate. It varies from 0 to 1. Value for eta learning rate. 

Higher the learning rate, faster is the convergence. Smaller the learning rate, convergence 

is slow. So, here the cost function is defined as  

where Ep is given by  

where OP and OP
d denote the actual and desired patterns, and it has a learning rate as I 

told you that varies from 0 to 1. Next, we see the backpropagation algorithm. 

So, the objective is to adjust the weights of the network so as to minimize the cost 

function, which will train the network for the mapping of the required function. For 

function approximation, we need to train the network, which means the adaptation of the 

network parameters towards the given input. So that the network can be able to 

approximate any given input function. So, through the backpropagation algorithm, we are 

going to see how the network parameters are updated. 

And the parameters of the network getting updated lead to a term called training of the 

network or network learning. The backpropagation algorithm uses the principle of 

gradient descent to train the network parameters. Let us define the output, input, and 

weight parameters associated with the network. x being the m cross n input vector, o 

being the n cross 1 output vector, and w_i k i k minus 1 represents the weight connecting 

the i kth neuron of the kth layer and the i k minus 1th neuron of the k minus 1th layer, 

and the h_i response, which is nothing but the response of the ith neuron in layer 1. Let us 

see here. 

Let us consider To derive this backpropagation algorithm, a three-layered network x1 to 

xm is an input layer where the sources are x1 to xm, which means x is an m cross 1 input 

vector, and we have three layers l1, l2, and l3, where l1 and l2 are the hidden layers and l3 

is the last layer called the output layer, so this network has one Input layer, 2 hidden 

layers, and 1 output layer. And you can see here the weights connecting the first hidden 



layer L1 to the input layer L0 are represented by WL1L0. This is the nomenclature that I 

give to the weight vector connecting the first hidden layer to the input layer. 

Likewise, for the second hidden layer to the first hidden layer, the weight vector is given 

by WL2L1. And WL3L2 is the weight vector connecting the output layer L3 to the 

second hidden layer L2. And you can see the outputs of the first hidden layer are given by 

H1, H2, H3 up to HN1, where there are N1 number of neurons in the first hidden layer. 

Likewise, the output of The second hidden layer is also given by H1, H2 up to HN2 

because there are N2 numbers of hidden neurons in layer 2. 

So, what is observed here is the neuron's output is given by H1, H2, and so on, which are 

precisely the hidden layer neuron's output. Whereas, The output of the neurons in layer 3, 

represented by H1, H2, H3, are basically the outputs of any neurons. Because the third 

layer is the output layer, H1 is represented as O1, H2 as O2, H3 as O3, and Hn3 as O5. 

Accordingly, we have the output of the neurons of the output layer represented by O2, 

O1, O3 up to ON3. 

Next, we have two phases in training the neural network in Back propagation-based 

algorithm. The first one is the forward phase, which means we are getting the response or 

output of the neurons present in the hidden layer as well as the output layer based on the 

weight vectors as per the input given. Given an input, getting the response is called the 

forward phase. Here, the input to the L1th neuron of the first hidden layer is SL1, which is 

given by  

 

And the output of the L 1 th neuron of the first hidden layer is HL1, which is given by the 

transfer function of the input S L1. Since we use the transfer function being the sigmoidal 

transfer function which takes the form where the input is 

SL1. That is why it is minus SL1. 

Likewise, the input to the L second neuron of the second hidden layer is SL2, which is 

given by  

 

 

 



 

And the output of the L2 neuron of the second hidden layer is hL2, which is the transfer 

function of SL2, which is the input.  That is given by the sigmoidal transfer function  

 

 

which is SL2. Next, the forward phase continues. The input to the third layer, which is the 

output layer, is SL3, which is given by  

and the output is given by the output layer OL3, where L3 is the output layer and O is the 

output layer from that network. So, OL3 equals the transfer function of SL3 input, thus  

 

Now, let us see the backpropagation of error. This is the starting phase of the backward 

phase, forward phase, and the backward phase. The instantaneous cost function in error is 

given by  

So, the weight update starts here based on the backward propagation of the error. So, the 

update of the weights connecting the output to the hidden layer is the first step because, 

from the back side, the first layer that we are going to face is the second hidden layer and 

the output layer. So, the weights connecting the second hidden layer and the output layer 

are to be first updated. So,  

 

where this term, the second term  

 

where the chain rule plays a vital role. So, for the sigmoidal activation function, the 

transfer function of the given input is given by 1 by 1 plus e power minus SLXLK, which 

is the input to the activation function. Thus, the partial derivative of this with respect to 

its input is given by an expression:  

 

Thus, it leads to which is nothing but the function into 1 minus the 

function. 



Thus,  

So, from the cost function of the error, we can write  

since error is  

That is why this has become your partial derivative of EL3 with respect to OL3. Then, the 

second term  

 

This is obtained because of the sigmoidal activation function's derivative with respect to 

its input. Then, combining equations 3 and 4, the previous equation 2 becomes  

 

 

So, this portion into this portion with a minus sign is what is combined here. Now, we 

can see that the weight update law  

So, it is this expression. So, this expression, equation 6, can be written as equation 7, 

where  

Likewise, we can see the update of the weights connecting between the two hidden 

layers, that is, layer L2 and layer L1. Thus, the weight update law becomes  

 

where Let us take this expression first 

 

So, this term is further expanded into  

whereas input to the third layer with respect to output from the second layer gives you 

WL3L2.  

So, we know that OL3 is given by this expression because of the sigmoidal activation 

function, and  

 

 



SL3 is given by this expression 

 

And thus,  

 

Now, combining equation 13, 12, and 3, equation 10 can be written as ∂E/∂WL2L1 

becomes finally, which is the 14th equation.  

 

Thus, the weight update law for the second weight connecting L2 and L1 layers becomes  

where 

 

which is equation 16. Now, finally, we can go for the update of the weight vector 

connecting the first hidden layer to the input layer that is HL1. L1 and L0. Thus,  

 

In the same way, when we continue this, we end up the weight update rule for this weight 

vector which is connecting L1 and L0 becomes  

where which is equation 16.  

Now, let us see the generalized delta rule can be obtained in terms of this example. Let us 

consider a four-layered network where delta L4 represents  

 

Likewise, we can go for the third layer update rule, which is  

Likewise, the second layer in terms of delta L2, where delta L2 is written in terms of delta 

L3.  

 

 



Whereas, for the first layer, we can say which is connecting the weights between layer L1 

and L0, the input layer and the first hidden layer. 

Thus, it is given by  

And thus,  

Now, let us come to the application of neural networks towards inverse kinematic control 

utilizing the backpropagation algorithm that we have seen before. So, here it is basically 

meant for the inverse kinematic control problem where the robotic system is here. 

In the Cartesian space, we have X actual, Y actual. It has to go to the X desired, Y 

desired point in space. So, given this space, we need to Move this robotic system to reach 

here by providing the joint angular vector containing theta 1 and theta 2. This is now 

theta 1 updated and theta 2 updated. 

So, to solve this inner schematic control problem, we use this multi-layer neural network 

with BPN. Given the desired position in space xd, yd, and zd in 3D Cartesian space, the 

network weights are updated, which connect between the output layer and the hidden 

layer, and the hidden layer and the input layer, and so on. So, given the input with the 

associated weights, the network is updated. With the network parameters, we get an 

output. That output of the network is considered as the joint angular vector of the robotic 

system, and that joint angular vector is given as input to the forward kinematic model of 

the robotic system. Hence, we get an actual value of the robotic tip for the desired tip 

position. The error between the desired and the actual tip position obtained from the 

forward kinematics through the input by the network output is the error function that has 

been backpropagated to update the weight parameters connecting the hidden to the output 

layer and the input to the hidden layer. 

These two weights are updated. Then, with the updated weight parameters, another input 

vector representing a different Cartesian position for the robotic system is given. Then, 

the process is continued until the error is minimized under a tolerable value. That is how 

the training of this network happens. This procedure is almost a semi-supervised or semi-

unsupervised learning. 

This procedure is used to get the results. With this, we can track the given desired 

trajectory precisely. Here is the pseudocode for this inverse kinematic control based on 

neural networks. Given the desired value, continue the loop with a condition for stopping 



the loop: if the error is less than a tolerant value, stop the loop; otherwise, continue with 

the loop. 

The network output for the given input is basically the joint angle that has been provided 

to the forward kinematic model in order to obtain the actual network output because we 

need to compare the desired Cartesian position with the actual Cartesian position of the 

robotic system. And the error is backpropagated, which is given by this expression, in 

order to update the network parameters. With the updated network parameters, we 

provide another new desired Cartesian position for the robotic system to reach. This 

process continues until the error is less than a tolerable value. 

Now, this is the demo that we have performed using this type of semi-unsupervised 

learning technique to solve a regression problem for the inverse kinematic control of a 5-

degree-of-freedom follower robot in minimally invasive surgery. The demo is presented 

here, where we have controlled the follower robotic system by providing a master 

command through the haptic device. The follower robot, which has 5 degrees of freedom 

and 5 links, must follow the given tip trajectory. This trajectory has been tracked by 

providing the joint angular values obtained from the neural network, and we achieved this 

through this simple neural network approach. Coming to the conclusion of this lecture, 

we first introduced neural networks, then discussed the backpropagation neural network 

algorithm, followed by the generalized delta rule, and finally applied 

neural networks to the inverse kinematic control of a robot. Thank you very much. 


