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Hello  everybody  and  welcome  once  again  to  the  NPTEL  online  certification  course  on

microelectronics:  devices  to  circuits.  Till  the previous  module,  we had covered the  basic  of

devices and the usage of devices for analog circuits. So primarily, till the previous module which

is about week 6 or week 7, we have actually dealt with the whole of analog design. The most, at

least the basics of analog design and so that given a MOSFET, either an N channel or P channel,

now you will be in a position to actually design for example basic filters, amplifiers, differential

amplifiers,  operational  amplifiers,  you would also be  in  a  position  to  understand the device

physics as we have understood in our previous module.

From this module onwards, we start our journey for digital logic design. This we will keep it

short, so about say about 4 hours will be devoted for digital logic design because the same has

already been done in your previous modules. So we will be repeating the slightly varied amount,

keeping in view your requirements for this course. So we will start with today’s module or talk

on combinational logic design and this is part 1 module of the combinational logic design.

(Refer Slide Time: 2:08)



So what we will be doing in the next half  an hour or so is, give you an idea about what is

combinational logic design, we will have a look into what is known as a static and dynamic logic

design. So this will be, we will be looking into the static and dynamic logic design, right, what is

the meaning of that and then what makes your device go ahead and choose pull up and pull down

network.  

So which device will you use for pull up networks and which device should you use for pull

down networks? We will explain each one of them. Then we will take an example of a two input

NAND gate and then we will go into static properties like for example, complementary gate and

then we will look into the propagation delay and then basically designing of large fan-in circuits

and then we will recapitulate the whole thing. So this is the basic flow which will happen.

(Refer Slide Time: 2:55)

Now just to give you an insight of what  we are trying to do here is, that till  now we were

assuming that you have an input which is basically a sine wave and you are supposed to know

how does the MOSFET or the active device behave at each and every point of the input cycle

which means that if the device is triode region, saturation region, active region and so on and so

forth. You were also told that the current equations for each region should be known to you right.

In digital logic design whereas, you actually work with only 2 phases, which is switching on and

off.  You  must  be  knowing  that  in  digital  logic,  you  only  work  with  1s  and  0s.  So  this

corresponds to on state and this corresponds to generally you know off state right? And therefore



there will be only 2 states and therefore in this case there will be some current flowing, in this

case the current will be equals to 0 and this case the current will be equals to nonzero, right.

So that makes my life relatively easier when we are dealing with digital logic. We have already

seen in our previous turn that whenever we are discussing a CMOS transistor, if you have an

NMOS and PMOS then when you give, say this is your input right and this is your output, Vout

and you have a load capacitance here. And this is your VDD then when you given input here

which is equals to say 0 then this switches on and Vout goes to 1, right?

When this becomes 1, the NMOS switches on right and this voltage here drops down to 0 and

therefore this goes to 0. So and this is known as a basic CMOS inverter, right? This is inverter.

Now in this case, as you can see, we can divide the whole thing into 2 parts. The top part and the

bottom part. So this is known as pull up device, PUD and this is known as a pull down device,

PDD. So this  is  pull  up device.  Why pull  up? Because this  device helps you to pull  up the

voltage at this particular point to VDD. 

And why pull down device? Because this device tries to pull down the voltage at this point down

to ground. This is your ground, right. Now if you have combinations of PMOS in the pull up,

then we define that to be as the pull up network.  If there are combinations of PMOSS.  And

similarly, if you have combination of NMOSS design at the bottom, then we define this to be as a

pull  down  network.  So  we  refer  to  this  as  PUN  and  this  as  PDN right.  This  is  the  basic

fundamental  principles  based  on which  we will  be starting  to  look into  our  whole  issue of

combinational logic.



(Refer Slide Time: 5:43)

Let me come to the combinational logic, first of all give you an introduction of combinational

logic.  Combinational  logics  are  the  most  simplest  circuits  of  digital  logic  design  and  as  I

discussed with you or I will be discussing just now, is that in a combinational logical circuit if

you look at this particular diagram here, you see I have got a set of inputs here on the left-hand

side and I have a set of outputs here on the right-hand side right?

Now if you look at this 1st bullet which you see, in the combinational logic right, we will not

discuss at this stage non-regenerative but that is in the combinational logic, the output at any

instance of time depends only on the signal present at that input which means that depending on

the inputs available here at a particular instance of time, the output is determined, right. So if you

can write down, output is actually only function of inputs at that particular time. It does not

depend upon anything else, right?

Whereas, if the output which is the 2nd bullet statement, if the output depends on the current input

data  which is  this  one, along with the previous state of the input,  we define this to be as a

sequential or regenerative logic which means that if the output from the previous sets of input

helps you to determine the current state, we define that to be the sequential logic. So what is the

primary difference between sequential logic and combinational logic?

Combinational  logics  are  responsible  for  giving  you an output  based on current  inputs.  For

example NAND gate, NOR gate, XOR gate, Ex- OR, any of the standard gates available to you



whereas,  a  sequential  logic  output  not  only depends upon the  present  state  of  input,  it  also

depends upon the previous states right? And therefore you have a memory sort of memory here

because you are storing at least some amount of data for a finite amount of time.

Therefore, these are also known as sequential logic, also known as regenerative because you are

regenerating  the  output  based  on  the  previous  inputs  whereas,  the  combinational  logic  is

basically  non-regenerative.  And  therefore  combinational  logics  are  also  referred  to  as  non-

regenerative circuits whereas sequential logics are referred to as regenerative logics and circuits,

fine.  So,  combinational  logic therefore let  us understand once again,  it  depends only on the

inputs in the present states.

Sequential logic depends on the present state inputs as well as remember, previous state inputs

right, on the previous outputs. Now, what we will be looking into this about 2 modules or so or 3

modules  or  so,  we will  be  concentrating  on  the  combinational  logic  itself  right.  Within  the

combinational logic, we have 2 types of logic once again. One is known as static and another is

known as dynamic logic right.

(Refer Slide Time: 8:37)

Now static logic primarily means that at every point of time, each of the gate output which is this

one, this is the gate output, right is either connected to VDD or VSS via a low resistance path.



I suppose you can understand. So let us suppose your all your inputs here, I1 to In are all 0, right

and suppose all the PMOSS are in series here right. Then all the PMOSS will be switched on, so

therefore I will have a low resistance path between output and VDD and this VDD will appear on

the gate side, right. Similarly, if all your inputs are 1 here and all your NMOS devices in the pull

down network are in series, then all your devices will be switched on together and you will have

a low resistance path from your output to the VSS right.

So you will have a low resistance path at this particular point right. Then we define such a design

to be a static design, right. So what is a static design? Whenever the output is connected to a low

impedance load or is connected to a VDD or VSS, which is output and it is not floating therefore,

please understand, it is not floating. It is either connected to VDD or VSS. So this is therefore, the

impedance at this particular point, Zout will be approximately equals to 0, right.

So output  impedance  is  0  and input  impedance  is  infinite  because,  why input  impedance  is

infinite in static design or for that matter, any CMOS structure is because you are sending the

signal onto the gate side. The gate is always separated from the channel by oxide layer and

therefore there will be no current flowing in this direction. So V by I will be infinitely large and

therefore your input impedance will be infinitely large. So in ideal cases, Z in equals to infinity

and Zout equals to 0, right. So this is your static design.

What is a dynamic design? We will look into dynamic design later on but just to give you a

definition  in  thoroughness.  This  relies  on  the  temporary  storage  of  signal  values  on  the

capacitance of high impedance nodes, right?  Now this is  quite interesting that  in a dynamic

design, you hold the value of the voltage at the output node through CL, right till the time when

you are not changing, means you need to change it externally, right. So you will be storing some

amount of the time the output side, right.

When you are storing the data, it has to be minimum stored till a point till your new sets of inputs

do not arrive, right. So typically, it is a floating node sort of node in a dynamic operation. Now

the design which you see in front of you in this slide is basically known as a complementary

logic,  right.  This  is  widely  used  static;  the  most  widely  used  static  logic  design  is  the

complementary design, as you can see here. Complementary means, you will have PMOSS in the

pull up and NMOSS in the pull down and complementary why?



Because if you give input high, output will be low; if you give input low, output will be high. So

they are complementary of each other, a basic CMOS static. So what we have learned across

this, static where output node is connected to either VDD or to VSS, having your output impedance

almost equal to 0, dynamic is a floating node and where the charges and the voltage is stored in

the output side till a new set of inputs are not given to it. Most of the time, we will be discussing

about the static design only, right. Okay.

Let me see why should we therefore choose a pull down or, what is the reason for choosing pull

up and pull down network? Now, I have been telling you that all my pull up networks should

always be made up of PMOSS and all my pull down networks should be always made of NMOSS

and there is a specific reason why we do like that, right. The reason is something like this and I

will tell you the reason in front of you. Say for example, your, this is your NMOS right.

(Refer Slide Time: 12:49)

This is your NMOS, let us suppose and you give a high-voltage VDD from the gate side. So what

will happen is, this will switch on and the output voltage here will be dragged to 0 and therefore

VDD goes to 0, right. There is no problem at all. VDD will go to 0 and what happens to your,

finally what happens? Your VDS becomes equals to 0 because this is grounded. So VDS is equals

to 0. Why? Because source is grounded, drain is also grounded, finally, you get VDS equals to 0

and VGS equals to VDD.



So when VDS equals to 0, finally I will get no current and I will get output equals to 0 and this is

stable condition. Let us put a PMOS here and let us see how it works out. See, what happens in

this  case is  that suppose you, because to switch it  on,  you have to  ground it,  right  because

PMOSS require grounded to be switched on, NMOSS require a positive voltage to be switched on

because of threshold voltage.

If you apply a bias here which is grounded, this is switched on, agreed with you and therefore the

voltage at this point will start to fall down, right? Who is storing the voltage? This capacitance is

storing the voltage in both the cases. So this voltage will start to fall down but here comes the big

issue that just as the voltage here,  right becomes equals to mod of VTP,  VTP is the threshold

voltage of the device, this device goes into cut-off. Right?

And that is the basic problem area of a PMOS that, whenever my V out reaches approximately

equals to mod of VTP right, this ensures that this is switched off. And as it switches off, you will

automatically, you can understand the reason why. Because if this is mod of VTP the difference

between these 2 is mod of VTP but understand, for device to be in the on state, VGS should be

greater than equals to the threshold voltage, right? That was what my basic definition is all about.

So gate to source voltage is 0 but I have a mod VTP here which is basically a fixed value. It

cannot  be,  never  be greater  than mod of  VTP and at  mod of VTP this  switches  off  and as it

switches off, my output voltage latches to a value equals to, just equals to mod of VTP which

means that my output voltage is not able to go directly to 0 but it only latches to a value equals to

mod of VTP which means that let us suppose the PMOS has got the threshold voltage of 0.5 volts,

then rather than the output going to 0, my output will actually fix to 0.5 volts.

So I will not be able to get the whole swing from VDD to 0. That is the reason we use a pull up,

we use a PMOS for all practical purposes. Similarly, let us come to pull down network.
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Sorry, in a pull up network. We were doing pull down, we will do pull up now. In pull up, let us

suppose, I have a PMOS right, I have a PMOS grounded again, this is connected to VDD right?

There it was 0, here it is connected to VDD. Now my, this is initially 0, this is switched on. This

voltage rises to VDD, right and goes to VDD. Now as it goes to VDD right, the idea is that this will

actually, can eventually go up to VDD. Why? Because then the VDS will be equals to 0.

And that will ensure my device will be switched off and therefore it will be switched on only at

VDD. So which ensures that the PMOS will actually raise my voltage at the output side to VDD. So

there is a full swing available to me. Whereas in this case, if we take NMOS, then when this is

switched on and I have 0 here, if it  is switched on, again a low resistance path is there and

therefore this voltage will start rising. It will rise, agreed but it will rise to a value equals to VDD

minus VTN. Why?

Because if this is VDD minus VTN, right and then VGS if you find out, this is equals to VDD minus

of VDD minus VTN which is nothing but VTN because this will get cancelled out. So I get VGS

equals to VTN. Now if the voltage rises above this, then VGS becomes less than threshold voltage

of the device and this device is switched off. Exactly the same as I discussed in the previous

slide. Are you able to get the picture?

See, so the idea therefore is the output has to go from 0 to VDD but as it goes to VDD minus VTN,

this device which is NMOS here, will be cut off, will go to cut off because your VGS becomes



less than VTH as the output voltage goes above this and therefore the output voltage, this voltage

latches to VDD minus VTN and which means that if I use a NMOS in the pull up network, my

output will be only latched to VDD minus VTN.

So if you say, VDD is 1.8 volts and VTN is 0.2 volts, then I will be only latched to 1.6 volts and I

will not be able to go to the whole swing attached to me, right? We will see later on that if you

are not using a whole swing, there is some problem, right and you are very close to VDD by 2. I

will give you an example. Say 1.8 volts and your threshold voltage of the device is 0.8. So 0.80 if

you subtract, I get 1 volt right. Now typically if we use a 1.8 volt supply, right your switching

thresholds are 0.9, which means that when the voltage, input voltage crosses 0.9 above, it is read

as input 1.

As it goes below 0.9, it is read as 0 but if your voltage itself is 1 volt, right then just you have a

difference of 0.1 volt, you see. A small noise voltage, some small change in the power supply

will switch on from on to off state and that is the reason, it is very critical that you use the whole

swing from VDD to ground right. And that is the reason we use a PMOS at the pull up stage and

we use NMOS in the pull down state.

(Refer Slide Time: 18:58)

Let us look at a two input NAND gate and I suppose you all are aware of it. It is pretty simple. If

you look at the logic of NAND, it is something like this. If I have got two inputs, right, let me

put it like this right, then this will be, sorry 0 1. Let me do it once again. Let me just rub this off.



So I get 0 0 1 1, I get 0 1 0 1, I get 0 0 will give me 1, 1 0 will give me 1 right and this will give

me 0 which means that whenever you get one, these 2 will be on right and therefore this output

which is F will go to 0 and therefore output will be 0.

For all other cases whenever you get 1 0, the PMOS is on and even if your one NMOS is on,

since they are in series, you have to make them both on together. So either A or B is 0, I will get

pull up network to be on and my output will be latched to VDD. Only in the case, when your 1 1

case,  I  will  get  output  equals  to  0  because  both  your  NMOSS,  A  and  B  are  switched  on

simultaneously, fine? And that is what is written all these are written here in this nature.

(Refer Slide Time: 20:42)

Now let  us  see,  how we can actually  make for example,  realize,  say for example  this.  The

methodology how you realize our combinational logical block in a CMOS circuitry right? Let me

say it is D. So it is basically your D. So F equals to D, right? It is equal to D plus B dot A plus C

complementary,  right? So I have to design this  one. So what you do is that,  you first of all

design, let us say pull down. So pull down, so to do the pull down, I make F here which is the

output and then I go pull down.

See, A plus C basically means that you should have 2 gates in parallel to each other, because this

is a OR combination. So I should have 2 gates in OR combination and I get something like this,

right. So they are OR condition here. So this is your A and this is your C because either of them



is 1, the circuit works right? If this is 1, this is 1, there will be a path available to me. Now D is in

series to because this is an ANDing here.

So I will have a B here, right? And then D is ORing with this whole thing. So D is ORing

primarily means that, I stop here and then D is ORing means I will have D something like this. D

is OR here. Fine. So I have A plus C dot B OR D, right. Now if I have to use it say for example,

now this is a pull down network right. This a pull down. Let me design for you the pull up

network.  Please  understand,  since  this  is  a  complementary  logic  right,  since  this  is  a

complementary logic, I would expect to see that the PMOS should be complementary of NMOS

which means that wherever you get OR gate, you do AND gate.

(Refer Slide Time: 22:10)

So you just start from here and then make one NMOS here which is A and then make C also in

series to this point, right and then since B was in series to A and C, you make something like

this. You will make it B like this. B and D was in parallel, so D should be in series again here. So

I will do like this. I am sorry. And all will be PMOSS, so all will be PMOSS. So I can have

something like this. So this is VDD and this is ground.

So this is how you realize this D plus B dot A plus C. And why do you get a complementary

automatically? Because this is a CMOS structure, right? So if you want to get back the value of

F, let us suppose F would not have, did not have this complementary signal, then you need to put

a static inverter here and this will give you F bar and therefore, since this is F, you will get F bar



and therefore D plus B dot A plus C will be available to you at this particular point and this will

be available at this particular point.

So what we have discussed is, we therefore know that by using certain techniques, I would be

able to generate a combinational logical block, right. And this combinational logical block will

have these networks available to me in which I can place these networks right and I can have

these, such type of designs. So I will recommend that you take any of the standard Boolean

expression and try to realize using CMOS switch logic here. For example, this one which we

have already done in the class.

(Refer Slide Time: 23:55)

Now look at the static property of CMOS inverter.  Let us suppose, as I discussed with you,

CMOS inverter logic gives you a rail to rail swing. Rail to rail means VDD to 0. So the 1st, the

power rail is VDD and you have a ground rail. When I say rail to rail swing, I mean to say the

output goes from VDD to ground, right? And this is one of the important merits of static CMOS

logic design that you are able to put your output swing up to VDD and down to ground, the whole

limits you can do.

So therefore, my output high, VOH means VOH is output high and VOL is output low. OH is output

high and this is equals to VDD. The output low is basically equals to 0 volts in this case. Now let

us see, that you did have but there is a problem here and the problem is, I will just point out from



this figure which you see in front of you, this one. Let us suppose, A and B for example you had

a maybe a 2 input NAND gate right and I had A and B both equals to 0 and both goes to 1.

So A and B were both equals to 0 and let us suppose A, sorry A and B were both equals to 0 and

both goes to 1. So A goes to also 1, and B also goes to 1. Now when both were equals to 0,

please understand, in a 2 input NAND gate, if we look back, the two input NAND gate which

was this one, your two PMOSS were in parallel, right? Let me erase it. 

(Refer time slide 25:34)

These two PMOSS are in parallel which means that if both are 0, both are on and therefore if

each  carries  a  resistance  of  R,  then  the  actual  resistance  is  actually  equals  to  R/2.  So  the

resistance between F and VDD rather than being R is now R/2 which means that I can pull up the

voltage  here  to  VDD in  a  much easier  manner.  Agreed?  So with  this  statement  or  with this

knowledge, see what happens. 

It means that when both A and B are equals to 0, my output was equals to 1, right. But you see,

the output remains 1 for a larger value of your V in. You see. From here, it starts to fall down,

somewhere here, around 1 volt. You are using a VDD of let us suppose, say 2 volt, so around

beyond even 1 volt you are able to sustain the input voltage to be equals to, the output voltage to

be equals to VDD and therefore this is known as a strong pull up network. Why? 



Because both your PMOSS are in parallel and therefore the effective resistance goes down and

you are able to pull the output voltage at F to VDD in a much, much better manner. And therefore

you see that output remains at VDD for a larger duration of time. So I am using a VDD of 2.5 volts.

So this is approximately, it  goes up to 2.5 here. So both sides, 2.5, right, so your pull down

networks are relatively weak in because they are in series. 

So I get R and R. So I get 2R as the effective resistance seen downwards and therefore it is very

difficult  to pull  it  down and therefore you see,  the 0 remains only till  0.5 volts,  where as 1

remains till more than even 1 volt, fine and that is the reason you say it is a very strong pull up

network. Similarly but you see here very interestingly that for the condition when A equals to 1

and B goes to 0 to 1 and B equals to 1, A goes to 0 to 1, in both the cases, the structure looks

approximately the same right? A 1, B goes to 0 to 1 implies that your pull down network gets

activated  whenever  B goes  from 0 to  1 and A goes  to 0 to  1 implies  that  it  gets  activated

whenever A goes from 0 to 1, right. 

Please understand a two input NAND gate, either of the inputs should be 0 for pull up network to

be on, right. Whereas for the pull down network to be on, both the inputs should be equals to 1.

So you see, when both the inputs are 0, your output resistance offered is R by 2 whereas if it is

only one 0, then you still have a pull up path but the resistance is R only. So it is difficult to pull

you up, pull the voltage up from F towards VDD and that is the reason I wanted to show here. 

So it is a bit complicated in the sense that you are not, your output voltages, though it gives you a

rail to rail swing but it is not input dependent right and how you, how the input transition takes

place,  the  output  depends  upon  that  value  as  such,  right.  Let  me  come  to  the  concept  of

propagation delay in a CMOS inverter and then we can switch our grounds.
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Now what we do is that, we replace each transistor by a switch and a resistance. So whenever my

device is in the on state, this will, whenever my A equals to 0, this will go down. So therefore I

write A complement and B complement. When I say A complement and B complement, I mean

to say 0 means the switch is on and 1 means the switch is off. Whereas for A and B, when A is

equals to 1, it switches on. A equals to 0, it switches off.

So I have a load capacitance here, I have a load capacitance here. Now this is the intermediate

capacitance here and is known as the load capacitance. Now we can calculate a simple RC delay

from your 1st order because these are all first-order circuits. So from your network theory basic

course, you can calculate the simple RC delay to be equals to 0.69 RP into CL. why? Because this

is a CL and this is a net RP when you design your external network.

Similarly in the pull down network, it will be Rn into CL. Rn is the resistance looking downwards,

right. Now of course, I will let you know why the propagation delay depends upon the input

pattern right. So this is my input, right and this is my output. So when input goes from 1 to 0, the

output  goes  from 0  to  1.  So  this  is  1  to  0  here  and  this  is  from 0  to  1,  right.  So  I  mean

complementary in nature.

Now when both A and B were equals to 1 and both goes to 0, you see the time taken to go to the

higher node is much faster and you can understand why. See when both were equals to 1, both

these transistors here and here were on, right. And you had these two resistances is coming into



series. So I get 2Rn effectively value. Now what has happened is suddenly, you have made this

go to 0, sorry, this 0 and this is also becoming 0. When these two become 0, this switches on and

therefore both the transistors help you to pull up the voltage at this particular point to VDD.

And since the effective resistance RP will be RP by 2, I will, so this at this point the delay will be

half almost and therefore you are able to switch on the value of voltage very fast to one value.

This is quite interesting that therefore,  your output for a static logic depends upon the input

transition also, right. Similarly, if you have, I will not go into details of the 2nd one. I leave it as

an exercise to you.

(Refer time slide 31:48)

For example, when A was equals to 1 and B goes from 1 to 0 right, when A and B both were

equals to 1, your pull down was on, if this was 0. Now what has happened, I am keeping A

equals to 1 but I am moving B equals to 0 which means that A equals to 1 means this is on, this

is off now and when this is, so let us look at this particular point that let us look at A equals to 1

and B equals to 1 to 0. So when A and B both were equals to 1 which is this one in the on state,

so this was on, this was on, this was off, this was off and you had output equals to 0.

Now what has happened? B is equals to 1. B is equal to 1 means B goes from 1 to 0. 1 to 0

means this opens and this closes, right? And therefore, only one path is available you to pull

down. There is no pull down path because you have switched off this. So the circuit is broken



down in the pull down. But your pull up path, only one resistance is switched on and therefore

this goes from 0 to 1 right. This, the violet line which you see is basically, sorry the green line

which you see is basically 0 to 1.

Similarly, when 1 to 0, you see the time taken is relatively smaller as compared to the previous

one. I will leave it as an exercise for you to find out. You can get all these discussions in this

book by Nikolic, Chandrakasan and Rabaey, one of the standard books which we use across

networks, across the whole digital, CMOS digital logic design. You can get the results from this

one.

(Refer Slide Time: 32:52)

Let  us  look  at  the  problems  of  complementary  CMOS.  Therefore  the  problem  with

complementary CMOS logic is that for N input, you require at least 2N Gates. That we have

already seen. For example, two input NAND gate, I require two PMOSS and two NMOSS. For 3

input NAND gate, I will require three PMOSS and three NMOSS. So for an N input NAND gate,

NOR gate, I require 2N number of gates and therefore the area is relatively large.

Larger number of gate also implies that the overall capacitance is also large because when you

have larger number of gates connected to the output, the output sees a larger capacitance which

is there with you and therefore, time taken to charge or discharge the capacitance also rises and

therefore delay becomes larger. And therefore if you go from a NAND2 to NAND3 logic, your

delays will be typically larger in that case, right.



Propagation delay of the gate deteriorates, that is what I was saying. The propagation delay of

the gates deteriorates as a function of fan-in. So was the fan-in starts to rise, means you, as large

number of gates becomes is available to you, you end up having a larger propagation delay and

you can understand why? Because your loading, load capacitance which is in the output side

starts to become higher and higher.

As I discussed with you, since pull up and pull down networks are complementary with respect

to each other, we have to ensure that so if let us suppose your pull up network is in parallel, your

pull  down network will  be in  series.  If  the pull  down network is  in  series,  then the overall

resistance will be the sum of individual resistances, right? R1 plus R2 plus R3. As a result, the

overall propagation delay will be much, much higher because the resistance is higher.

So you are paying both in terms of higher resistance pull down network as well as higher load

capacitive load. And therefore as you can see, the delay becomes a quadratic function of fan-in.

And  you  can  understand  why  assuming  quadratic?  Because  it  is  once  you  are  paying  for

resistance,  another  one  you are  paying for  capacitance  and that  is  the  reason,  these  are  the

problems of CMOS logic, right.

(Refer Slide Time: 34:52)

Let me therefore, as I discussed with you, so let us see what are the design techniques available

to you for large fan-in circuitry, right? What are the design techniques generally available to you

for large fan-in. One is that simply increase the size of the transistor. So if you increase the size



of  the  transistor,  W by  L  increases.  You  increase  the  value  of  W,  right  the  area  goes  on

increasing and therefore the resistance starts to fall down and you automatically have a lower

delay.

However, please understand when you increase the value of your W, you also end up paying the

price of increase in the parasitic capacitances, right. So though you reduce the resistance of the

gate, single gate but you add up to the parasitic capacitances of the previous gate and that makes

it  a  bit,  slightly  difficult  to  design.  That  is  what  I  was  saying that  if  the  load  capacitor  is

dominated over intrinsic capacitor then the widening of the device only creates a self loading

effect.

See, generally a device has got a self capacitance. For example, a Coxide, oxide capacitance of the

device right. It depends only on the area of the device. So epsilon A by toxide. So if we increase

the W, area increases, oxide capacitance increases. That is known as intrinsic capacitance but

you also have load capacitances,  right.  Load capacitances  by virtue of  a  CGD,  CGS which  is

basically the overlap capacitances and so on and so forth.

Now if your those capacitances are higher, load capacitances are higher, then increasing the size,

if you want to increase the size, you are actually increasing the value of CL rather than increasing

the value of intrinsic capacitances. And that makes the life difficult as such. And therefore sizing

is only effective when the load is dominated by fan-out. So which means that if you are driving a

larger number of such devices which is higher fan-out, then only sizing is an important issue or

you need to look into sizing issue but if your fan-in is very large right, the sizing will not help

you too much as far as designing is concerned for lower propagation delay.
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Now, let me give you a concept of progressive transistor sizing. See, if you look carefully at the

pull down network which is shown here in this case, so when both in 1, 2, 3 and 4, let me say this

is In N, there are N number of logics. So there are M1, M2, M3, MN. So there are N number of

gates available here. Now suppose all the gates are having 1 1 1 1 1.

All the NMOSS are on, then you can see that if you look at the delay, I get a 0.69 right multiplied

by M1 which is the this one multiplied by C1, resistance of M1 multiplied by C1 plus resistance of

M1 plus resistance of M2 into C2, right plus resistance of M1 plus resistance of M2 plus resistance

of  M3 into  C3.  You  are  getting  my point?  This  plus  this  plus  this,  this  plus  this  plus  this

multiplied by this.

This plus this multiplied by this and this multiplied by this, this is also known as Elmore delay.

So you see, this RM1 is coming thrice and if there are N number of gates, you will get RM1 N

number of times. So, it is always advisable to make the lowest gate right? The lowest gate means

this, you got it in series, the largest gate. You make it largest, this resistance will be the smallest

and therefore you go on adding it, you get the smallest delay with respect to the overall delay.

So it is always advisable that try to keep the aspect ratio of the gate which is farthest away from

the input largest. Once you ensure that, your overall delay starts to reduce and this is what is

known as progressive scaling in transistor. So M1 is greater than M2 is greater than M3 is greater



than M4, right. Though it looks very simple on a pen and paper, in actual layout it becomes very

difficult to achieve it.
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What is known as input reordering? I will just use a single term here. You can go into it later on.

Now try to make, see whenever you have a combinational logic, you will have N number of

signals coming together, right? For example, I will just you a small example, let us suppose I

have got these 2 signals here right and I have got this F here and this is my pull down network.

So there are 2. I have got A and B here. Now let us suppose A arrives earlier.

So even if A arrives earlier, this switches on but still, suppose A equals to 1 and this switches on,

my B is equal to still 0, right and it will go to 1 but it will go to 1 at a later stage. But till it goes

to 1, my F cannot go to 0 because there is no direct path between F and ground. Are you able to

get the picture? Which means that, you have to wait till the B signal comes into picture, right. So

we define B signal to be as the critical signal.

So what is the critical signal? Critical signals are those signals which are the last to arrive and

which are, when they come last to arrive, they evaluate the output also last. So they help you to,

so you have to wait till the critical signal arrival for the output to go to 0 or 1, right? The rule of

thumb is and there is a reason for that that you try to keep this, if B is the critical signal, try to

keep it closest to the output. So putting the critical path transistor closer to the output, gives a

higher speed of operation.



This is a rule and there is a reason for that. You please find out yourself what the reason is, but

this is typically the reason that the critical path signal should be kept closer to the output. It has

to do with the discharging, output discharging, right. I will tell you how, I can give you a reason

for that.

(Refer Slide Time: 41:08)

Let us suppose I have this as the consideration and this is A and this is B, right? This is B and

this is, so this is your F and this is your pull up network, something is here. Let us suppose B is

the critical signal, right? A is the non-critical signal. So when A becomes equal to, both were 0

and output was equals to, so both sorry, I am sorry. Both were equals to let us suppose 0, output

was equals to 1 because both were off. Now A goes from 0 to 1 but B still remains 0 and it has to

wait till then.

So when it goes to 1, this becomes on. This becomes on means that, so you have a capacitance

here and a capacitance here also. Some amount of this 1 will appear across this capacitance here

but it has to, some amount of charge at F will appear will charge this CL. But then, it has to wait

till B arrives right? So what you try to do is quite interesting is, that you try to make your B

arrive here and A arrive here. So A has already gone from 0 to 1 right and therefore, so this is

grounded, this is there and this is with me and I have a capacitance loading here.

So A goes from 0 to 1 implies that this has switched on, all my charge, extra charge available at

this point has gone to the ground and therefore, simply if this goes from, B goes from 0 to 1 now,



this  becomes  on,  then  this  extra  charge  which  was  already  available  here  and  need  not  be

discharged. It has already been discharged within the time. So you do some amount of time

sharing. So the time till which your critical signal was not appearing to you, you discharge the

extra  capacitance  or  discharge  the  extra  charge  at  the  drain  end  of  my  transistor  A.  And

therefore, you need not therefore discharge large charge. You have to discharge a lower charge

and therefore your speed becomes larger, right.
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Again one methodology is that logic restructuring methodology which is logic number 4. You

have to manipulate it in such a manner that you try to make it as symmetrical as possible. So

when you make it symmetrical, the delay, so typically let us suppose it was not symmetrical and

let us suppose, this reaches 1 and this reaches 0 right, so output will be 0 right because it is an

AND gate. But if this is 1 and if this is let us suppose, reaches some delay by say tms, then this

output has to wait till tms for the output to appear.

So what you try to do is, you try to make it symmetrical in nature. So, for example, 1, 2, 3, 4, 5,

6. 6 input NOR gate can be broken up into 2-3 input NOR gate and 1 NAND gate. So it is a very

high fan-in, not a very good idea to manipulate, break it into 2 smaller fan-in transistors and you

try to make it more symmetrical in design. And that is known as logic restructuring, right?
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So let me recapitulate what we done till this module. The most widely used static module design

is CMOS logic. As we discussed just now, the NMOS transistors are better pull down networks,

PMOS  devices  are  very  good  pull  up  networks,  they  are  part  of  pull  up  networks.

Complementary logic is very, is dual in nature. Please understand, this is very, very important

when you are designing combinational  logic.  But whenever  you are doing a complementary

logic, your pull up network and pull down network are dual of each other which means that if

upper 2 transistors are in series, the lower 2 will be in parallel and vice versa.

So you should keep in mind and should do a large amount of practice of, so if I give you a

Boolean expression,  you should be able  to  design its  logical  function or the complementary

logic. The propagation delay of the complex logic follows NMOS delay rule which we have

discussed and therefore, it is always advisable to keep your transistor which is most away from

the output, the largest in size, therefore resistance falls down and that is the one methodology.

The 2nd is that when you do, so this is known as a progressive sizing of the transistor. You also

need to understand that the critical signal should be kept very close to the output for your lower

delay and then you also have to do logic restructuring. Try to keep your fan-in low and try to

make it a symmetrical path so that you do not have glitches or there is no problem in this case

right. So these are the few statements or the few areas in which people have worked on. And I



hope you have understood this module in a better manner. Okay. Thanks a lot. Thank you for

your patient hearing.


