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Hello  everybody  and  welcome  to  the  this  edition  of  NPTEL online  certification  course  on

Microelectronics Devices to Circuits. We will  be now starting an important part of amplifier

design and that is basically understanding the stability and the stability will be understood from

the position of the poles in the S-plane right. So, we will first understand how do you will design

S-plane and then there how do you, what is a pole and which we have already in our earlier

section and then using that pole, or the location of that pole we will try to analyze whether this

amplifier is stable or not.

What do I mean by stability? Stability primarily means that if you have a sustained oscillation in

the output and the peak to peak of the output voltage is constant with respect to time then we

define that to be sustained oscillation. If the voltage starts to fall with respect to time or rise with

respect to time, we define that to be as an unstable element specially if the voltage rise with

respect to time you enter into a loop which is never-ending and therefore, the overall gain, for

example, if you have a positive feedback right, you will always go on adding voltage to the input

and therefore the output voltage will always be going to be greater in time domain. So, with this

basic background let me start today’s topic. Let us see how it works? 
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So, with this basic background let me start today’s topic. Let us see how it works? So, we will be

looking at what is known as the stability of the feedback system. So what are the criterias? We

will  study the criterias  for stability  in an amplifier  design,  right.  We will  also look into the

position of stability  and pole location.  So, how do I  relate  the fact  that  where the poles are

located and how stability can be asserted from the position of those poles in the S-plane? 

Now,  amplifier  will  look  at  the  single-pole  response,  two-pole  response  and  multiple  pole

response right. So, this single pole response, multiple or three-pole, single-pole primarily means

that you have only single pole to the left half-plane. Two poles means there are two poles on the

left half-plane, three or more poles is the number of poles three or more poles again on the in the

left half-plane. So, I am assuming that all the poles are on the left half-plane of the axis. Now, let

me explain to you where this concept comes into picture? 
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Generally, S is equal to right (σ + jω) right. So, this was general overall any complex quantity

will consist of a real quantity plus imaginary quantity right. So, whenever you plot, this plot

where this is a real part on the X-axis and this is the jω part and this basically the imaginary part,

imaginary part and this is a real part here. Then we define this to be as a S-plane. We will see

that if I remember in your previous discussion we were defining the transfer function as for

example 1/(S+4) right.

Now, if you see very carefully at s is equal to -4. The value of H(S) will actually go to infinity

right and therefore I can one of the poles of this session is S is equal to minus 4. So, where is -4?

This is -1, -2, -3, and -4. So, if you place it here I will get a very large output amplitude available

to me.

Similarly, let us suppose that S square is equal to some say again say some value say 4, then S

will be equal to ±2 right. But, for +2 this is +2 here one pole here and one pole on this side and -

2 one pole on this side. This will be stable but this will be unstable. So, on the right-hand side,

this will be unstable on right side and everything on left-hand side will be stable in nature. 

We will come on this in detail later but just for information sake at this stage whenever you refer

to S-plane it is basically σ versus jω, σ is the real part of S and jω is basically the imaginary part

and when you place it in this manner, you get this. If the poles are available onto your jω axis



this will let you what is known as the oscillatory wave. So, I will have an oscillatory wavefront

here sustainable oscillations are available here. 
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So, with this basic knowledge of S-plane, let me explain you the feedback like feedback. Now,

with respect to the feedback system. We have already seen in our previous discussions that the

negative feedback primarily means that the output signal is subtracted from the input signal right

to produce an error signal. So, not all output signal is subtracted. A part of the output signal is

subtracted from the input signal and an error is taken care of. This error is then added up with

input or this error signal which is available to you is fed into the amplifier. The amplifier again



amplifier is a signal and this process is iterative process through the feedback loop. We have

already studied that portion earlier. 

Now, as I discussed with you that if you remember how I define my loop gain. Loop gain was

basically equal to Aβ and this Aβ will be the function of frequency, right. Assuming initially that

they are not, but in reality they might be a function of frequency right.

As we have discussed in our earlier terms that if you plot A verses gain normalized gain in dB

versus frequency let us say ω then typical values which you get is something like this. So, this is

a mid-frequency gain is almost constant from this point to this point and this is a bandwidth

actually and this is fL and this is your fH right. So, this part is the part where A is independent of

ω and these are the portions where the gain this is your gain the gain is a function of frequency

right. 

So, with this knowledge, I can safely say that for a large change in the frequency you might have

the change in the value of your amplification factor. At some frequencies the subtraction may

actually  be  the  addition,  the  negative  feedback  may  actually  be  look  as  positive  feedback

producing an unstable system. I will explain it to you how I am talking to it. 

See, as I discussed with you T is transfer function will consist of its mode value and its phase

right and if you have a generic diagram of Af with feedback is equal to A, without feedback is

equal to 1 plus transfer function of feedback then in our case as in our previous discussion A f is

equal to A/(1+Aβ) then you see that af with respect to β comes out to be in S terms comes out to

be this where ts is the loop gain so A β is the loop gain which you see right. 
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Now, if you look carefully again get back to the whole discussion. What we can write down from

all this discussion is that, that Af(jω)will be equal to A(jω) right divided by 1 plus A(jω) into

β(jω) right. So the loop gain L(ω) is equal to A(jω) into β(jω) right. Now, this can also be written

as if you want to find out its in the form which is most understandable to most of us that we find

out its mode value so the magnitude multiplied by ej(ω) right where (ω) is the phase which you

get.

Now, let us suppose  happens to be equal to 180 degree then my loop gain loop gain which is

basically my L(ω) will actually be negative and therefore, if it is negative so this whole quantity

becomes negative this whole quantity and therefore Af(jω) is greater than A(jω) right and that is

the problem area that generally you do have your with feedback gains are increases as compared

to without feedback. So Xf in general sense. I can write A(jω180) right into β (jω180) into Xi. This

will be equal to -Xi. So, Xf is equal to -Xi. So where A and β are the basically the feed-forward

feedback factor at ω equals to 180 degrees. 

So, what I am trying to tell  you is that when the phase angle is equal to 180 degrees. Your

negative  feedback  actually  converts  into  a  positive  feedback.  So,  till  180  you  will  have  a

negative  feedback and your  system will  be relatively  stable  as  you cross  180 degrees,  your

system becomes unstable. That is what I wanted to prove from the statement as far as this is

concerned. 
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So, therefore as I  discussed with you the stability  of the feedback system in the circuit  is a

function of the loop gain T(jω) right. Now, if the loop gain magnitude is unity when the phase is

equal to 180 degrees then as I discussed with you T(jω) will be equal to -1 and the closed-loop

gain goes to infinity, why? Because if you remember it was A/(1+Aβ). So, now if A β is happens

exactly to be equal to -1 then A upon 0 is basically tending to be equal to infinity to a rather

extent.

Idea is how do you define therefore oscillation? Oscillation is defined therefore as even with the

small input on to the input side of the system or the oscillator I should be able to get an external

oscillations available to be right that is what an output will exist as 0 input right. Why this 0

input? 0 input means you do not have any input right given as a signal state, but you might have

some small noise signal, some thermal signal is available to you which tries to make it available

it to circuit state right.

Now, if you try to have a linear amplifier obviously an oscillator is considered to be an unstable

circuit. I hope you understand why is it like that. Linear circuit primarily means that with respect

to frequency there will be a linear rise in the gain let us suppose. But that is not true when you

have oscillation gain into consideration right. Your oscillator, sustained oscillation will give you

a gain independent  of frequency, mid-frequency gain and therefore linear amplifier  designed

with an oscillator is a difficult task almost impossible task. 



Now, therefore to sum up all these discussions these two points are very very important that

whenever my T(jω) is less than 1 so I get a negative quantity and when the phase is 180 degrees

right, then the system is stable right so whenever it is less than 1, A/(1+Aβ) will be A will be

therefore less than A and the system will be stable as when the phase is 180 degree at that point

of time if your T(jω) is transfer function is greater or equals to 1 then in the denominator you get

T(jω) to be negative and as a result automatically you will get 1 minus small quantity will give

you a small output in the denominator and therefore you will get the system to be unstable in

nature right because it will be rising wave function as such for your case right. So, this is what

you get as far as switching is concerned.
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Now, let  me come to the concepts of poles and zeroes.  As I discussed with you just  in the

starting of this module that for an amplifier to be stable or any system to be stable its poles

should lie on the left half of the s plane. So, as a rule of thumb across the board and we will see

just now a numerical reasoning for that that if you have s plane within the S plane you want to

generate a stable system then try to ensure that the poles are at actually situated on the left half

side of the plane right. That is pretty important where your σ is less than 0. That is very very

important where your σ is less than 0. 

As I discussed with you earlier also a pair of complex conjugate poles on the jω axis gives you a

sustained oscillations. It will rather extend right. Now, poles on the right-hand side will always

give  you an  oscillations  which  are  growing with  respect  to  time.  So,  it  will  be  a  primarily

unstable design for for any oscillator or for the amplifier. The reason being on the right-hand side

you will always get the output will be always gaining with respect to time and therefore it will be

a never-ending process as far as this is concerned.

Now, let me let me come to the explanation here that if you see this signal s is equal to σ 0±jωn

right and therefore if this is the value of s which you see then we can write down voltage.

I just write down for you that let me say let me say is given S equal to σ0±jω0  and therefore V(t)

voltage is given as eσ
0
t[e+jω

n
t + e-jω

n
t]. So this is the sign of ωnt multiplied by e(t) gives you these

value. Now if you solve this I get 2*eσ0t *cos(ωnt). This will be your V(t). 



Now, if the poles are situated to the left half-plane which means the σ0 is less than 0 right then

we get a stable system otherwise we will get an unstable system. Now, if it is less than 0 you will

actually see something like this that the output will be like we will go on decreasing as you move

with respect to time. So, if you plot a graph here which is the envelope of the whole design you

will see that the envelope is actually a falling envelop. So, this is your gain in jω versus ω right

and this gives you the decay right. 

So, this basically is your envelop, envelop of the cell and you can see where σ0 is less than 0 so

you will get e to the power σ0 coming into picture which means σ0 is less than 0 means σ will be

negative  e  to  the  power  negative  will  actually  be  a  falling  function  and  therefore  you will

automatically get a smaller and smaller function in general right. So, this is the basic concept

which you see here. As I discussed with you 2*eσ0t *cos(ωnt).
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Now therefore, if the two therefore let us suppose you have got two poles and they are on the left

half-plane and they are complex conjugate. Conjugate means one is a real part and another is an

imaginary part and therefore they are referred to as complex conjugate. So, if you have such

types of planes you will automatically get a function which is e to the power (jωnt) and then there

will be term β here. If β is negative this function will always be a falling function as such and

this is falling now right and therefore the envelope is also falling down which means that you are

restricting the output to a very very low peak to peak voltage. 



Similarly if is in the S plane the design is such that that the S falls to the right for example 1 upon

S mimus 4 then I get equals to hs then I get s equal to plus 4 for the poles so which means that it

falls on the right-hand side of the plane and therefore it becomes sort of a rising function which

you see the envelope is rising envelop this is a falling envelop of the output side right. If they are

exactly  on the plane  as  you can see on this  graph then it  will  always give you a sustained

oscillations to a larger extent. 

So, the job of a designer when designing an oscillator primarily is oscillator or amplifier is that

you try to keep your poles exactly on the jω axis that makes a sustainable sustainable growth in

terms of peak to peak voltage. So, that is a basic idea that is all about and then we come to the

fact that let us suppose that we do have a single-pole response which means that I do have a

single design or a single-pole and the single pole will have on the left-hand side. 
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Then we can safely write down A0 so we can safely write down for a single-pole system that

A(S) equals to A0 upon 1 plus S upon ωp right single pole you will also get only single S function

here. A of s will be feedback A0 upon 1 plus Aβ so you remember it is basically A0 upon 1 plus

A β so I am replacing this A by A plus 1 β so I get A plus 1 by A β and I get A0 here so what I

get from here is that my with gain the feedback factor increases. 

So, I get As is equal to A0 divided by 1 plus s by ω p right and therefore I get A with feedback to

be equals to A0 divided by 1 plus A0 into β right divided by 1 plus S divided by ω  p 1 plus A0

times β fine so I get therefore from here if you solve it I get ωpf with feedback ω p 1 plus A β. So,

you see your gain frequency starts to rise with feedback and that is what you see here. Note that

while at a low frequency is a difference between the two plots is 20 log(1+ A0 β), the two curves

coincide at high frequencies right. 

Physically speaking at such high frequencies the loop gain is much smaller than unity and the

feedback  factor  is  ineffective  right.  So,  if  you  remember  it  was  A/(1+Aβ)  at  such  high

frequencies this value of loop gain which is A β is much smaller to as compare to 1. Therefore,

your af which is a feedback factor almost equals to A and it remains A for quite duration of time

and  therefore  feedback  is  quite  ineffective  right  that  is  what  we  have  learned  through  this

discussion. 
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Now, therefore applying a negative feedback as I discussed in your previous turn you are able to

increase the bandwidth of the amplifier at the cost of its gain right. Since the pole of the closed-

loop of the amplifier never enters the right half of the s plane, you automatically get a dominant

much more stable system with you right. 

As I discussed with you a single-pole amplifier is stable for any value of β. Thus, this amplifier is

said to be unconditionally  stable  right  pretty  important  statement  that  this  is  unconditionally

stable which means that if you do not have to put in extra efforts to get its stable unconditionally

stable. As you can see in my diagram here on the left half-plane you have got ωpf right and this is

ωp which is basically your left half pole right and this pole is basically on the left half-plane

therefore it is stable but by some mechanism or other I am able to shift this by doing negative

feedback actually I am able to shift this pole from this point to this point so the access value that

you get is basically this much and that is the reason I add ωp plus ωp into A0β. so, this extra zone

which you get is not coming here and you get unstable.

On the right-hand side if you look very carefully it is actually a plot of gain versus frequency and

as you can see as the gain falls down its 3dB bandwidth it is basically the higher cut of the

frequency which is this one is actually falling down right. So, gain in bandwidth product again is

constant. This is the standard rule of thumb which we apply in reality.
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Now, let us look at a two-pole response or a two-pole design. I will explain to you how a two-

pole design works typically in this scenario. But before you, ok so as I discussed with you that

phase should never go beyond 90 degrees right. It should be between 0 and 180, but if you want

to find out a positive feedback it should not be above 90 degrees right.

Let us look at the amplifier with the two-pole response. So two-pole response primarily means

that I have one pole here ωp1 and I have got another pole here ωp2 right and then I start applying

frequency. So I do a characteristics equation. This is very simple and straight forward. It is a

low-frequency gain or low-frequency parameter  which I  am fixing up. My my now what  is

happening is that I am varying my ωp1 and ωp2 right and we check out how these work out. 

So, if you want to if you want to solve it and gets its pole the denominator has to be standardized

in the form of a2+2ab+b2 and they have done that using this formula and from here I can get the

value of s to be some value as well as two values of plus and minus sign. Similarly, Q will have

Q is basically known as pole a Q-factor or the Q factor here right Q factor. It is typically height

by the full-width half maxima that is what you define as so if you have a sharp profile then you

have a high Q because the selectivity is very very high. Not only that its height is also very large.

So this height by this height happens to be relatively small quantity, but still because of the fact

that this gives you an idea about how large is your function which you are dealing with. It is

quite an important formula which you see in front of you here. So, I got Q-factor available with

me.
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Now, note that ω0 is the radial distance of poles from the origin and Q indicates distance from the

poles from the jω axis.  So, it  is  quite  interesting that in the previous slide if you look very

carefully then you will see that for two-pole response as I discussed with you you have one at ωp1

with a negative sign, you have another at minus ωp2 on to the negative side here right on the

negative side.

Now, so if as you increase the value of the A β gain into loop gain goes on increasing these two

poles start to come closer to each other right. How is it possible? You see it is possible because

of this reason. A0 β will go on increasing and therefore this quantity will go on increasing, as a



result,  your  peaks  will  be  sharp.  So,  corresponding  to  this  you  will  get  one  peak  here,

corresponding to this you will get one peak here. Bring it closer and you will start getting single

peak of a large dimension within the typical value of σ right and that is very important issue

which people are looking into it. 

ω0 is referred to as the pole frequency of the design right ω0 is defined as the pole frequency right

and this pole frequency gives you the value of your this thing. So in a jω versus σ plane if you

want to find out then we define this to be as the σ plane and this to be jω axis, then if my pole is

complex conjugate and lying on the left half-plane we try to first plot them and then check the

value of ω0 and ω0/2Q. Which is this is distance right. 

Now, if you bring closer here if you bring closer here then you will see that let us suppose you

want here then this and you will have this right and as a result what will happen is that you are

bringing the poles closer to the jω axis so you are allowing it to go for a sustained oscillations

right but that will be only possible provided you are able to enhance the values of your or reduce

the values of your Q. Then only this will be possible. 

Now, let me come to a two-pole system as I discussed with you Q indicates the distance of the

poles from the jω axis. The poles on the jω axis have Q equal to infinity and that makes sense

also. So at, if you are on jω axis you put a pole, right put a pole here on the jω axis obviously Q

has to be infinity because in this case your S is equal to 0 or σ equals to 0 right. So, the real

function  is  gone.  Only  what  you will  have  is  an  oscillatory  function  that  is  because  of  the

complex conjugate pair of pair of output signal. 
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So, what you do is I will give you just a thought and we can move forward that if you have a

multiple let us suppose that we have a multiple system then the two-pole response again let me

show As is given as A0 upon 1 plus S by ωp1 right into 1 plus S upon ωp2. A generalized statement

of a two-pole network. Then if I assume that this is the time when I will get the overall picture

then again I write down as ssquare plus S into ωp1 plus ωp2 plus 1 plus A0β into ωp1 into  ωp2. This

must be equal to 0. If it is 0 then you automatically you get this function to be high.

So I get S to be equal to plus minus 1 by 2 right ωp1 plus ωp2 right. This multiplied by multiplied

by obviously plus minus 1 by 2 ωp1 plus ωp2 right ωp2 and then minus 4 times 1 plus A0 times β

multiplied by ωp1 and ωp2. 

So the same formula which I have been using time and again minus B by A and so on so forth

and then you get s to be equals to this quantity here right. So as and as as as therefore as A0 into

β goes on increasing right so what happens is that this quantity goes on decreasing sorry, yes this

quantity goes on increasing and therefore this quantity goes on decreasing when this quantity

goes on decreasing this quantity goes on increasing. So, I will the poles will start moving to the

left of the plane right-left of the plane here right. 



(Refer slide time: 28:05)

So the response of the feedback amplifier shows no peaking at Q equal to less than 0.707 right

and that is the reason you will get a stable system at Q equals to 0.707. That is also referred to as

maximally flat response right. If Q is greater than that you might get a peak here which is not a

very good sign. If Q is less than this value the 0.707 and 0.03 my mid-frequency gain will be

very very low and I will not be able to have a stabilized values of frequencies where they will fit

into each other in a proper fashion. 

Now, boundary case value is a value is equal to 0.707 which corresponds to a phase margin of 45

degrees. So, 45 degree is the phase margin which you see as there the poles location will be at 45

degrees also referred to as pole position right. 
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Now, amplifier with three poles is that just explained to you this thing and then we can move

forward. What we say is that the last there are three or last one as we move away from most

away from the origin  axis  starts  moving to  the left  away from the pole as the value  of  the

frequency goes on increasing. However, however, the other two poles starts to move closer to

each other right. A time will come when they will actually override with respect to each other

and then start moving to the left and to the right up and down. 

So, till  this  movement,  you will  only have a real  real  frame movement.  So σ movement as

available to you, but be on this particular point you do have complex conjugate movement of

these two poles as you move towards the jω axis. So, that gives you a proper idea about the

three-loop  system  or  the  three-loop  system  in  a  sense  is  there.  It  is  much  more  complex

conjugate and makes it unstable as such.

So with this let me show to you also as I discussed with you in the previous this thing that if you

go back so if you back to your previous discussion then you will see that you require such high

end maximally flat amplifiers where your gain is almost independent of frequency. 
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So, let me recapitulate what we studied in this module for stability the loop gain has to be less

than greater than 1 and if it is equal to 1 or the phase margin equals to 180 degrees I enter into

the region of unstability  of (oscillation)  amplifier.  The amplifier  frequency responds and the

stability is determined by the poles. So, typically the poles of left half-plane it is much more

stable.  Poles  in the right  half-plane gives rise to growing oscillations  right  and that  is  quite

difficult to achieve. If not difficult it is not desirable to achieve in common physical systems. 

For an amplifier or any other system to be stable, its poles should be in the left half of the s

plane,  we  have  seen  that.  A  pair  of  complex  conjugate  poles  on  the  jω  axis  gives  rise  to

sinusoidal oscillations in reality right. So, you have will always have sinusoidal oscillations if the

two poles are located on the jω axis in a sense right and that gives you an idea about why we are

requiring such a such a concept here. 
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Now, I will just stop this discussion with one small enhancement and that is known as Nyquist

plot and I will discuss this Nyquist plot may be in the next turn giving you an idea what is

Nyquist plot right. We will discuss this Nyguist plot in the next module. Thank you for your

patience hearing. 


