
Microelectronics: Devices to Circuits
Professor Sudeb Dasgupta

Department of Electronics & Communication Engineering
Indian Institute of Technology Roorkee

Lecture – 22
Logical Efforts - I

Hello and welcome to the NPTEL online certification course on Microelectronics: Devices to

Circuits. In our previous interactions we have seen that we have understood the basic concept

of power dissipation on what issues these power dissipations can be lowered, how can they be

lowered, we also looked into the concept of delay which means high to low and low to high

propagation delay, we saw that the delay was obviously dependent on the width of the

transistor beat pull-up or pull-down and therefore, higher the width lower was the value of a

tPHL or tPLH, but the price you paid for it was that higher the width means more will be the

capacitance and therefore, it will be difficult for the signal to drive the gate, right because

your if your width increases the area under the gate increases and therefore, that is the

problem area. So you need to optimize the design.

And in one of the optimization problems which we saw in our previous case we saw that, if

you are able to keep a fan-out of approximately the stage ratio to approximately 3 we can get

the minimum delay available to us. Keeping that in background let us start with one module

which is a critical model for estimating delay between point A and point B of a circuit, right

and that is what is the methodology which is adopted to do that is basically known as logical

effort.

(Refer Slide Time: 2:12)

So today’s topic will be referred to as a logical effort. So we will look at logical effort

concept. So what will be doing is we will be introducing to you the logical effort what is the

basic, sorry, I will give you the basic idea of logical effort and basic idea of logical effort,

then we will be coming to, so we will introduce to you the logical effort what is the

motivation for studying logical effort, and then what is the meaning of logical effort and

where it is effectively used so basics of logical effort will be known to you.

Then how do you calculate logical effort for certain logic gates, right and then look at the

multi stage network and then we will finally recapitulate, right. Before we move forward let

me give you an idea about the concept or let me give you an idea about how you design it.

For example if you have for example a gate which is something like this which is basically a

two input NAND gate, right, right and you sometimes do like this and then you do like this

then this is A and this is B, then if you put A and B as your inputs, right, then you will see for

0 0 since both A and B is, so this is A, this is B, so when both A and B are 0 output will be 1

when either one of them this is still output will be 1 and when both are 1 output will be 0. So

this is your NAND gate approximation, so A dot B bar.

Now the idea here is that you can only have one transition from, so if you are storing 1 here

you can only go to 0 provided both A and B are equals to 1, which is this one, but if this was

initially 0, then you can go to 1 either of these 3, so if you fall back to your previous

understanding you will know that as I discussed with you that 0 to 1 transitions are the

transitions which are power consuming cycles. So therefore, if the… initially you have a data

of 0 available with you, the probability that it will go to VDD is much higher as compared to it

going to down assuming that all the inputs are statistically possible and independent with

respect to each other.

Then if initially you had 0 in your Vout output, then it can go to VDD only if under all these

three conditions, whereas it can stay to 0 only and 1 the condition which is basically this

condition.

So you see that a power dissipation is therefore, also depends upon the statistics of your input

and the type of gate whereas, if you look at this point and then if we let us say you design

something like this that now your pull-up is basically your pull-up is basically series, right

and you pull down is basically in parallel so if you have A here and you have B here so if you

look here then if you plot A, B and Y, Y is the output here then if for this condition, right

when both are 0 then only you will have 1, for all other cases you will have 0 which means

that you initially if you have 1 here then the probability it to go to 0 is just that only one of

the inputs or both of them should go to 1, so the probability is just to go to 0 is much higher

whereas, if it wants to go to 0 then both A and B has to go to 0.

So again I am assuming that the, if it is statistically independent and equal probability of

getting all the signals are available with you then I would not expect to see, I would expect to

see power dissipating cycle more in a and NOR 2 logic as compared to a NAND 2 logic, this

is the first observation. The second observation is that you see when you are pulling up you

have two transistors in series, right and when you are pulling down in this case you have only

one… even one transistor if switches ON you will be obviously in parallel.

So, if we assume that each transistor is the resistance of R, then and if output is basically let

us suppose is C, then I can safely say that if both the transistors are ON, both will be in

parallel I will get τ equals to R by 2 right, into C whereas, if I assume this to be also R this to

be also R, then τ this is τPHL, right, and this is τPLH will be equals to 2R times C. So means if I

assume that NMOS’s and PMOS’s have exactly the same value of resistance as being offered

during the ON state, then τPHL is RC by 2 whereas, τPLH is 2 RC, right and that is quite critical.

Therefore, low-to-high propagation delays 4 times larger as compared to high to low

propagation delay. The same thing will reverse when you do a NAND-2 logic, this is for

NOR-2. If you do a NAND-2 logic, for NAND-2 logic if you want to find out, then what will

happen is that you will get an automatic reductions so τPLH will be equals to 2 RC and sorry

τPLH will be equals to RC by 2, and τPHL will be equals to RC twice RC I hope you understand

the reason.

So therefore, if I for in this case if I want to make that my high to low and low to high are

equal I need to size my PMOS in such a manner that by high to low and low to high are

equal, so they will be in series so if I am able to make this one R by 2 and this one R by 2

then even in series these will add up, you will get R only and they will make me equal. So R

by 2 primarily means that you make the width larger, but when you make the width larger

then this capacitive loading also increases drastically, right. So this logical effort gives me an

idea that what changes should I do in my circuitry in order to achieve the best possible results

in terms of delay, right, with this basic introduction let me introduce to you the topic which

we which we were supposed to do.

(Refer Slide Time: 8:44)

So, as I discussed with you that designing a circuit that is what I was saying that designing a

circuit to achieve the greatest speed or minimum delay will give you large number of choices,

right? So you need to choose which is the best choice in front of you. Now the idea is

therefore, how large should a logic gates transistor be to achieve the least delay? Please

understand that just making it large does not make it… make that achieve the least delay

because we just now saw that making it large also increase the capacitive loading and

therefore, your capacitive loading will be larger.

Now this is true for a single stage amplifier, single stage design, but generally in today's

world you have multi stage circuits, right, so you have one stage driving another, driving

another and so on and so forth. In such a scenario if you look very carefully the first stage is

loaded by excessively by the subsequent stages, so the subsequent stage capacitive load will

be so high that it will try to reduce the delay, try to enhance the delay of the first stage.

So can we therefore, find out the total number of stages which gives you the minimum delay?

So what we say the method of logical effort if you look very carefully what is written here

then the method of logical effort is an easy way to minimize the delay in a logic circuit, right,

so what we do? We compare the delay estimates of different logic structures. For example we

compare for a NAND-2, NOR-2, XOR-2 and then we say that the fastest candidate can be

given by this particular design.

Logical effort also specifies the best number of stages in a logical path and the respective

transistor sizes for a given load, so which means that if I know for sure that my output load is

CL or load is given to me which is exactly equals to some load then can we do a back

calculation and say that okay my transistor size should be this much for this much load to be

driven by an input to get the minimum delay, right?

So the overall justification or overall idea is that given a set of choice or given a set of paths

or data path can we in some way or other find out a methodology by which we can optimize

the delay, right? So this is what we get, right.

(Refer Slide Time: 11:22)

Okay, so two things logical effect takes care of is what is the capacitive load right?, so we

have a so you will have a delay because of capacitive load right, and you also have a delay by

virtue of the topology of the logic gate, this we were discussing in the starting slide that there

will be two delays associated with any design. The first delay will be the intrinsic delay

which is basically because of the device, because of the capacitances and so on and so forth,

right. Whereas, the second delay is basically depending upon the logic structure which you

are using, are you using a NAND-2 logic, are you are using a NOR-2 logic, are you using

what type of universal gate are you using in a digital logic in order to express it?

Now, the absolute delay of a gate can be expressed as, as you can see is given by this basic

formula, where d absolute is equals to d multiplied by τ. Now d is basically unit less delay of

the gate and it depends upon the type of process through which you are designing that

particular gate, so this basically intrinsically you cannot do too much, you cannot do too

much a manipulation in that because it is basically depending on the type of process the

fabrication process through which the structure has gone through. So typically for 0.6 micron

technology τ is approximately 50 microseconds, picoseconds and it is 12 picoseconds for

0.18 micron technology.

And that is quite interesting which means that as you go lower in the technology node, your

intrinsic delay starts to lower down, so you see a lowering down of intrinsic delay of

50 picosecond to 12 picosecond, right. Now, so why do you multiply both of them? The

reason being that, the reason you multiply is that τ is the delay unit, so if τ is the delay unit

right, in picosecond, since τ is 1 picosecond and d is the delay unit by virtue of the

fabrication, we can actually find out the total delay to be equals to d into τ, right.

(Refer Slide Time: 13:22)

Now, the delay of a logical gate d can be therefore, broken up into two parts, one is known as

a stage effort or effort delay and another is the parasitic delay, what is a parasitic delay? Well

parasitic delay is very simple straightforward we already discussed this point earlier also just

to refresh your memories, I will just do it, let us suppose you have a gate here and you have a

gate here and you have a source and drain here, right?

Now, what is happening is that the inversion layer is formed only below this region, so this is

where the inversion layer is form and you have large carrier concentration here the resistivity

here actually falls down, so resistance is lowered much here, but you see if you look at this

region under also as under lap region these two regions, this, as well as this, then typically in

these two regions you will automatically have a much much higher delay or the intrinsic

delay will be larger because there are no charge carriers here and therefore, this will act as a

parasitic, which means that it is basically adding so this sort will happen is something like

this it will be one R here corresponds to this, and then you have a straight wire and then one

R will be here, so this is R1 and this is R2 or RS and RD, so RSC, RDC, parasitic so RSP and RDP,

so DP is the drain side parasitic and S is the source side parasitic.

So the delay is by, one delay will be by virtue of this and you will also have a stage effort

which is there this stage effort has got two component one is known as logical effort another

is known as electrical effort, electrical effort is the most easiest one h and it is given as CL or

C out by C in. So, let us suppose I have a buffer or let me say a simple inverter and if my output

load capacitance is CL and my input load capacitance is C in, then CL this by this is effectively

my h, right, this h is also sometimes referred to as fan out, right, so this is also referred to as

sometime as fan out, C out and C in.

(Refer Slide Time: 15:42)

Now, you can also have something like this that you do have let us suppose you have

something like this that let me say, let me say you have so you have let us suppose a buffer

here which means that you have let us say this, so I will get 1 0 1 0 and I will let us put a 0, I

will get a 0, so this is a buffer. Now, in the buffer this is the load capacitance which you see

CL are external load and this is my C in, so this, by this is referred to as the electrical effort,

electrical effort French electrical effort is there.

So higher the electrical effort of course as you can see more will be the load capacitance as

compared to C in and therefore, higher delay will be effectively large so f will be larger in that

case if you get a higher electrical effort and that is the problem area which people face as far

as electrical effort is concerned.

(Refer Slide Time: 16:46)

So what is a logical effort? Logical effort tells you that of a logical gate, logical effort for a

logical gate tells you how much worse it is at producing output current than an inverter, right.

So assuming that I have an inverter, I give an input to an inverter and I check out how much

amount of current is flowing in the output side for a pair of inputs, then what I do I take the

same pair of input and put it into a logical gate any logical NOR-2, NAND-2 whichever you

want to calculate and see how much current is flowing, right.

If it is better good equal to an inverter this logical effort will let me know, right. As we have

already discussed therefore, that logical gate, the delay in the logical gate will depend upon or

will increase with the electrical effort, obviously it will do so, what is the electrical effort?

Because h, higher the value of h you will have higher will be the delay and therefore, why?

Because your loading is typically very large, right.

And if you therefore, see a plot between electrical effort and normalize delay this graph here

you see you will have a parasitic delay P is a constant one, this is independent of number of

inputs, number of gates so on and so forth it is basically process and device centric and

therefore, this parasitic delay is always constant. So even when your electrical effort is 0, you

still have some amount of normalized delay. For example a two input NAND gate, we will

talk about inverter later on. For example a two input NAND gate even with some electrical

effort, electrical effort equals to 0, 0 means basically CL equals to 0, I will automatically have

this two, this two is because of primarily because of the because of the parasitic delay which

you see.

Now, if you go on increasing the electrical effort you automatically get a linear increase in

the value of normalized delay and this is true also because then your load you in the external

world is increasing and therefore, your delay will go on increasing, right. We define

therefore, in this case, so let us suppose, let us suppose we take an inverter which is a skewed

inverter, then we define this to be as a parasitic delay this p and this f is my effort delay, this f

is my effort delay.

So at about approximately 3 the value of your normalized delay is 4 and we define g as

equals to 1 and p equals to 1, what is g and what is g? If we look back to your previous slide,

g is this, which is basically my logical effort, so g is my logical effort and if you go back to

your here, what is p? The p value is the parasitic delay, parasitic delay is fixed always fixed,

so I get f plus p equals to d, so what I am doing here is the p is 1, cp is 1, what is g? Electrical

effort is also let us assume it to be 1 because for our invert rate is 1, delay which you get

capital D is equals to h plus 1, what is h? h is basically your electrical effort and you get d

equals to h plus 1, right, that is how you work out.

And therefore, more complex logical gates have more logical effort, so if we have got rather

than a two input NAND gate, if you have a three input NAND gate life becomes more

difficult and therefore, your logical effort is larger in that case, right and you also have a

larger parasitic delay if for example in that case. For example if you look back here a two

input NAND gate you see your parasitics are actually 2, this is parasitic for a NAND gate, so

you see p equals to 2, we will see how why is it g equals to 4 by 3, but p equals to 2, right.

The formula is g times h plus the parasitic delay is your total delay, so you see 4 into 3 into h

plus 2, right, where h is the your electrical effort, right, so if you are plotting here somewhere

here let us suppose you are plotting somewhere here, then here h equals to 3, 4 by 3 into 3

plus 2 is equal to 6, so normalized delay is approximately equals to 6, fine. How we got 4 by

3 for g, we will see that just in the next subsequent slide. So I get for 2 input NAND gate,

now if it would have more complex and let me say it would have been 2 inputs XOR gate

then the graph will change drastically in this case as compared to an inverter.

(Refer Slide Time: 21:18)

Let me come to the next slide and let us see how a logical effort works or in virtual logical

effort assuming that my input rise time and output fall time exactly the same I can write down

input rise time is proportional to C out which is this 1 plus CP, CP is the loading capacity which

you see which is given as β times delay, β times delay or delay therefore, can be written as β

times C out plus CP and if you plot C out plus CP versus delay you will always get a linear curve

whose slope will be equals to beta. So this is a standard way of looking at it.

(Refer Slide Time: 21:46)

Now, how do you do a logical effort? You do it in this manner, that if you have a inverter

which is basically as a single input inverter we make that PMOS is 2 times larger as

compared to 1, so that tPHL equal to tPLH, now we try to make a NAND-2 logic and we have

two PMOS’s in parallel and 2 NMOS’s is in series. Now, if you want this delay to be exactly

equal to this delay, you have to make the lower transistor size double, then only I will get R

by 2, R by 2 available to me, for pull up there is no issue because pull up this is 2, for any 0 I

get 2 here and therefore, my pull up will be equal.

But for pull-down this is 1 and since this is 2, right, so this is 1, so if I have to double it

because it is in series so this will be R, if 1 corresponds to R then 2 will corresponds to R by

2, so R by 2 plus R by 2 is always equals to 2 and the pull-down will be equal in that case. So

pull up and pull down will be again 2 is to 1 available to you. So you see in this case C in is

equal to 3, why 3? Because 2 for PMOS 2 for PMOS and 1 plus NMOS, why is it 4 here?

Because for single gate it is 2 for this thing and 2 for NMOS, right, so we define g to be 4 by

3, 4 by 3 means 4 is the effective capacitance seen from the NAND-2 logic, right divided by

equally sized inverter which will give you the same delay, so 4 by 3, right.

(Refer Slide Time: 23:30)

For a NOR-2 logic things change slightly and the reason is that they changed slightly, why?

Because for NOR-2 logic understand if you want to compare this with this, then for pull-

down I can afford to be 1 because both are in parallel so each one of them is 1 no problem,

but in the pull-up I require this to be as 4 because then only it will become R by 2 because

this is already 2, so this has to be R by, to make it R by 2, I have to double the size, so I am

doubling the size so 4. So 4 means each block is looking at 4 plus 1, 5, so 5 by 3 is basically

my g, which is which you see, right. So this is how you calculate the value of g, you compare

that with a standalone inverter, right and that is how you get it.

(Refer Slide Time: 24:12)

So if you look at the some of the logical efforts and common gates you see that inverter

which is basically the 1 input obviously input has got only 1 for an inverter, parasitic delay is

P inverter, for a NAND logic for 2 input 4 by 3, 3 input 5, so you see as the number of gates

inputs increases the logical effort also increases, the general formula is n plus 2 by 3 for

NAND gate and NOR gate it is 2n plus 1 by 3, where n is the number of inputs which you see

right and that is a standard way of looking at it or a way of looking at it.

(Refer Slide Time: 24:44)

I will give an example of FO4 inverter delay and if I have a inverter something like this then f

is equal to g into h, g if you see single inverter it is 1, so 1 into assuming that you are driving

4 such inverters, so 1 into 4 is the output 1, P inverter is the parasitic delay assuming it to be

equal to 1 I get d equals to f plus P inverter, right f is nothing but 4 so 4 plus 1 is 5, right so d

absolute is equal to d into τ typically as I discussed with you 12 picoseconds for 180

nanometer so I get d absolute is equal to 5 into 12 which is 60 picoseconds so I got d from

here multiply that with 12 I get 60, which means that if I have a single transistor driving 4

similar transistors with fan-out 4, I will get approximately 60 picosecond delay between the

input and the output.

(Refer Slide Time: 25:34)

Let us say an example of a NOR-2 logic, let us suppose I have a 4 input NOR logic driving

10 such gates, so as I discuss with you f will be g into h, g in this case will be 9 by 3, right, it

will be 9 by 3 you can check it for a 4 input NOR gate for example just let me just show it to

you for a 4 input NAND gate 4 2s are 8 plus 1, 9; 9 by 3 which you get, right, and that is

what you get 9 by 3 multiplied by 10 because equally sized so h will be equals to 10, right so

I get and let us suppose the parasitic for inverter is 4, so I get d equals to f plus inverter so I

get 30 plus 4; 34 and for again 180 nanometer 34 into 12 is 408 picosecond.

So therefore, a 4 input NOR driving 10 such 4 input NOR gate the picosecond

408 picosecond is the gate, so first you have to find out the f value, then you find out the if P

parasitic is given to you, d equals to f plus p inverter when you once you find out the value of

d you then find out multiply it by τ, τ is always fixed for a particular technology and from

there you can calculate the total delay between the gates.

(Refer Slide Time: 26:55)

So what we will, what we will try to do is give you a brief idea about the logical effort for a

multi, so path stage a path so now if you have a large path then we what we do is that we

define a path logical effort, so in a large path we go on adding the logical effort for each one

of them, we define path electrical effort as C out by C in, we have already discussed this path,

we define a new term which is known as branching effort which is C on path versus plus C off

path by C on path, which means that let us suppose I have this and my signal goes via this

path, then this is C off path and this is C on path, so we see the C on path plus C off path thereby C

on path gives you this value and the total branching effort is given by this formula.

(Refer Slide Time: 27:34)

From these explanations I get that total logical path will be Pi, Pi will be the individual stage

so if you add all the individual stages you get the total branch effort, so what we do is, we

different path effort to be equal to g b into h, right and from there we find the delay as this

plus p which is p is the parasitic delay for each stage, right? We therefore, say for N stage

network, stage effort for each stage will be F to the power 1 by n so the square root or n th root

of F is my stage effort which we see, right?

(Refer Slide Time: 28:10)

So what we do is we delay we define as N into F, so N into nth root of F plus P is basically by

delay, right and that is what you get the total delay minimum achievable delay along a path,

right. Now, so the minimum capacity C in where capacitance C in at each stage will be given

by this formula, where C in is basically the input capacitance of ith stage and I get total in the

output stage for the ith stage I get C out divided by hi cap, hi cap is the basically the logical

effort this F root N divided by logical effort.

(Refer Slide Time: 28:45)

So, let me recapitulate therefore, if we have logical effort g, electrical effort as h, branching

effort as b, then we define the total effort f is equal to g into h and effort delay to be equals to

f and p and therefore, the total delay is always equals to f plus p, how do you find out f? g

into h you find out, so in a single stage, so in multiple stage you can do it, so first of all find

this and then you multiply with this and then you then you add to p and you get the total

delay, right.

So we have understood two important points, I will come into details of this one at later

course also, but at this stage we actually understood that given that means if a particular logic

gate is driving some other logic gate, right maybe it is a N input logic gate we can find out

the delay between point A and point B for the design, right that will help you to gain in this

area, with this let me thank you for your hearing, thanks a lot, thank you!

