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Welcome to our lectures on the advance power electronics and control. We were discussing about

state space averaging modelling in our non-linear and the linear control. Let us go to the slide

actually which I was discussing. So this is, basically we have to go back little bit. So we were

here.

(Refer Slide Time: 00:47)

Basically we were discussing about the state space average modeling. So state space average

modeling are decomposed in small AC perturbations denoted by ~ and the steady state quantity.

It is represented by the uppercase letter.

(Refer Slide Time: 01:06)



So let us come to this point. So similarly we have discussed about actually x~. This will have the

derivations. Similarly, we will have a y~.

(Refer Slide Time: 01:20)

And thus there are the terms, actually the A1delta1 A2delta2, and the average value X are the

steady state values. So it does not feature out as a perturbed quantities. Similarly, we want delta1,

B2delta 2 and the u are also the DC values and C1delta1, C2delta2*X, this is also (()) (01:51)

values and this, it is not there, that is a different issue in our condition. In most of the cases that

the D matrix was 0, D1delta1 and D2delta2*U are the other DC quantities.

Thus eliminate those DC quantity from it and you will have these overall equations. And thus



actually from this equation 3 and 4, you have to short it out the DC portion. So you can rewrite

since  that  X  dot  should  be  equal  to  0.  So  it  is  a  steady  state  condition.  So  ultimately

0=A1delta1+A2delta2X+B1delta1+B2delta2*U  and  Y=,  similarly,  C1delta1+C2delta2*X,

definitely, +D1delta1+D2delta2*U.

So we can actually, neglecting this higher order terms in the equation 3 and 4, see there will be a

multiplications  of  actually  delta  1  delta,  so this  kind  of  term has  been actually  no point  of

multiplying those terms since this gives you a very small values. And thus what we can rewrite is

that again that A1-delta1*delta x B1-B2*delta U*del U should be equal to 0. So these are the 3

actually conditions. This can be rewrite as equation number 7 also.

(Refer Slide Time: 03:34)

Thus we can linearize with that help and ultimately x~ can be actually substituted, those terms

which can be equated to 0, ultimately A1delta 1+A2delta 2+x A1-A2X B1-B2*U to delta and

B1*delta 1+B2*delta 2*u. So there should not be any term without ~. So all the DC value has

been eliminated from the overall equation.

Similarly, y~ will have this conditions, you can actually derive these equations. After deriving

these equations since actually A average we can write, that is A1delta1+A2delta2. B average is

B1delta1+B2delta2.  Similarly,  C1  and  C2.  So  thus  we  can  write  x~  dot=A average*x~+B

average*U~ A1-A2*X+B1-B2*U*delta. Similarly, the output matrix that is given by the y. Most



of the cases, this is equal to 0.

(Refer Slide Time: 04:56)

So  ultimately  you  go  back  to  your  buck-boost  converter.  This  is  actually  the  switching

configurations. So you got a switch and thereafter diode and you got an inductor here. So this

should be on and off depending on the duty cycle and that actually the duty cycle is delta 1 and is

the current control source, so that will be equal to I*del 1. Similarly, it will be a delta1*Vs but

potential difference at this point is Vs, it is blocking the voltage Vs.

And thus we can actually model it as a transformer having actually trans-ratio, delta2 and delta1

because it is a reflected trans-ratio. So you are talking in terms of the current. So it will have that

is the inverse. So current I1 is flowing and current I2 is flowing and we can have actually a

transformer model where I1 will have a trans-ratio delta1 and I2 have a trans-ratio delta2. So

average equivalence circuits, this is for the switching cell.

So we can 0ed down to the equivalent  average model  is  this  and we can visualize an ideal

transformer as like this. So we are telling several times that we cannot use transformer in DC but

with the DC to DC converter, we can have all characteristics may be like an AC transformer. So

that is the beauty of AC to DC transformer.

Ultimately polarity is reversed because you are getting that polarity reverse there. If the polarity



is same, that dot would have been the same point. So see that how we can derive the transformer,

similar transformer in AC in case of the DC. So it  is a DC to DC converter. Now let us go

beyond it. So hope that you are getting the juice of the subject right now.

(Refer Slide Time: 07:37)

So using this equation 5 and 6, please refer to this equation 5 and 6 because I will be recalling.

So this is the 5 and 6 because this is the steady state DC values. The slide number 6, the input U

to the output Y steady state relations needed for the open loop and feed forward control, can be

obtained. That is the transfer function, that is the output/input. So same thing we can get if we

have, if you know this basically the A matrix C matrix and the B matrix.

And fortunately, we cannot have a transfer functions because this one is time variant as well as

non-linear. But once you have made an average, of course, it is linear. Thus this is the transfer

function. So you can come down to the transfer function and once you get a transfer function, all

those actually, all those things you have learnt in your transfer function technique like the Bode

plot, polar plot, root locus, all those analysis can be done here.

So see that how we can march from the actually state space to the transfer function. So applying

if the transfer function to the equation 7 with 0 initial condition, these are the condition, using the

superposition theorem, small signal duty cycle of the output transfer function can be obtained

considering 0 line perturbations that is u=0, that is you have considered no input variations that is



the load variation.

Of course, you can also take a consideration that because but that is also quite natural like in

buck-boost converter that source itself is varying that is let us say solar panel. But in all present

analysis, we have negated it. So ys/delta s, you can write C average Is-A average A1-A2*X B1-

B2*U. Similarly, you can have C1-C2*X+D1-D2*U. Thus what happens? The line to output

transfer function or the audio, we sometime say it comes out in the frequency domain in the

audible susceptible limit because we can hear the range of 20 KHz and for this, we sometimes

say that it is audio susceptible limits.

But nothing to do and much so we can take this is, for this overall the result when we take or try

to take our switching frequency above to 20 KHz that, we will get rid of the noises, sound noises.

But of course, you will increase the EMI EMC problem. So susceptibility of transfer function is

delivered using the same method and considering that delta~=0, that is variation of the duty cycle

is 0, that is in a steady state only.

So you know that actually V0/Vm is something D/1-D, we have studied it for the, actually this

kind of converter and this holds that when delta~=0. Thus we are coming to the same thing on

the state space analysis. Similarly, ys/us that is essentially the perturbed quantities, so you can

write it actually C average sI-A average/this one, generally this value is 0.

(Refer Slide Time: 11:58)



Now  let  us  see  Buck-boost  converter  transfer  function.  So  you  have  written  this  matrices

previously. So you can combine by this equations, also using this equation 7 derived previously

making X is basically the current through the inductor and the voltage across the capacitor as V0

and essentially y is you can take it V0 as well as IL and U=of course, it is the input VDC.

And linearize the small signal state space model of the buck-boost converter. You can rewrite is

the substitution and this is basically the A average and this is the basically the C average and D

matrix is telling it should be equal to 0 and thus you get these equations. You can substitute here.

From there, we can get the transfer function.

(Refer Slide Time: 13:03)



So what else? So see that what are the beauties of this transfer function which you might have

done. The derivation has been done in other way from the differential equations. Same thing can

be derived from the transfer  function  directly. So that  is  the beauty of  the transfer  function

analysis. So using the equation 11 in 8, input U to the output Y that is IL/VDC, that is delta1/R0

delta1-1 square.

Similarly, V0/VDC that is output by the input transfer function that is you know that is, I was

writing D/1-D or delta1 1-delta. So see that how we have derived the same thing from the state

space equations.  In the meantime,  we have commented over the switching frequency. In the

meantime actually if you are actually familiar with the state space equations, we can derive also

the transfer functions.

All the transfer functions are been actually been put her. Similarly, the line to output transfer

functions were actually with the ~ will have basically this/this and with v0/vDC, will be this and

we may actually go for actually Bode plot. We may go for the polar plot and see that this is stable

or not. And accordingly, we design the controller and we have a different kind of controllers.

We can start with the PI controller. They are the PID controller. There are many other form of

controller. Equation 9, the small signal duty cycle of delta 0 to the output y transfer functions are

that is basically you can rewrite it that in terms of the delta and we shall try to find it out whether

the system is stable with this delta and this is basically the same way for the output voltage

versus delta. So this basically help us to choose a feedback, what you want to feed it back. 

There is a different actually transfer function. And so designer can choose either one of or two of

it. This transfer functions enable the choice of the feedback loop design of the compensation

network. We shall see just now.

(Refer Slide Time: 15:52)



Now what we want basically the system to be stable first of course? And that is what we do. In

the applications of the classical linear feedback which you have studied in your control system to

switching the power converters, so we have while he was telling us the Bode plot, root locus,

polar plot, Nyquist are usually suitable method to assess the transfer function. Now you got a

transfer function and you have a Matlab, so it is very easy to analyze now a days.

The general rules to design the compensation if you are familiar with this basically on the Bode

plot domain, then only it is applied. Otherwise, if you are familiar with the transfer functions of

course, you have better method but we just like to link actually transfer functions and the state

space. Open loop transfer function as follows. The low frequency gain should be high enough to

minimize the output steady state errors, that is the ideal op amp characteristics.

Please recall the ideal op amp characteristics. We have the statement there. The frequency of 0

dB gain or unity gain or actually omega 0dB should be placed close to the maximum allowed by

the modeling approximation that is we have said lambda max should be less than 1 and to allow

the first transient response. So we have same transient condition, overshoots, all those criteria of

the system but all our knowledge was restricted to the second order system.

But here it does not put any limitations of the dimension of the matrix, though we have a second

order system anyway. So this will ensure that the fast response. And if you talk about Bode plot,



then gain margin and phase margin will be there. To ensure stability, the phase margin must be

positive.

Otherwise, we have to put a lead lag compensator. And in general, it is greater than 30 degree, 45

to 70 is desirable. Otherwise, what will happen, if it is actually 90, then system is very sluggish.

So we want also the fast response, right. So it has to be greater than 30 and we try to tune it in a

range of the 45 to 70. So that is the task of the compensator.

So once you design and play controller, so you should have the gain margin and phase margin

within these conditions  to  operate  this  converter  successfully. So the root  locus  or no poles

should enter into right half of the x plane or if you are taking of the root locus as a tool to

analyze.

To increase  stability, the gain  should be less  than -30 dB at  the frequency where the phase

reaches -180 degree or we can say in other words that his gain margin is greater than 30 dB. So

that is something the criteria we should obtain to have a satisfactory operations of this converter,

of any converters. But we have taken an example of a very common topology. So now you see

that how you can do that. Now linear feedback design ensuring the stability.

(Refer Slide Time: 20:10)

So this is basically now when you are in a transfer function domain, you talk about specifically



the Bode plot, Nyquist plot, polar plot. These are essentially you have studied into the linear

control system. And essentially this is an average model. And it also works but it has a limitation.

For this reason, we require to switch over to the non-linear control. But let us take all the juice

available with the linear control.

Then only we shall see that, actually we see the limitations of the linear control and go to the

non-linear control. So to guarantee the gain and the phase margin which was the said before, that

should be actually, phase margin should be around 45 to 70 and the gain margin should be 30 dB.

The following series compensators, actually compensation transfer function usually implemented

with the op amp or you can now a days, you can do it with the digital domain and is often used

as a lead lag compensator.

What happen actually if you chose an op amp and you set up the circuits and its value is fixed.

But sometimes what happens, if you set by programming and you can dynamically set this gain

margin and phase margin then that has a big advantage. And for this reason, we are gradually

switching to the digital domain. The lag compensation must be used or should be used in the

converter with good stability margin but poor steady state accuracy.

So your steady state error will be there. So please recall your this kind of thing. So it will reach

the stable limit after sometime. Lead compensator can be used in converter with a good steady

state accuracy. So to reach and it will be contained with the, will not be much repel in the DC

output voltage. So what does it physically signify these terms? The lag compensation should be

used in the converter with a good stability margin but poor steady state accuracy.

If load has changed, it will recover it faster. Let us say load has been changed to 1 amp to 2 amp

within a limit of (()) (22:51), then voltage has sacked. But will recover very fast. But this lead

compensation will have, what we will do? Lead compensation will actually recover it slowly but

it  will  ensure  that  it  is  ripple  in  the  DC voltage  is  within  a  limit,  it  is  less  than  the  lag

compensator.

So we have to play around it. And see that actually you will have a design specifications, this



much of the DC ripple, this much is actually the rise time and this much is actually load change

settling time, all those quantities will be there, accordingly you are required to design it, right. So

ultimately you got basically CLL, that is the output matrix that is KLL1+sTz/1=sTp where Tz are

the poles of this transfer functions and the Tps are the, actually where Tzs are the 0's of the

transfer function and Tps are the poles of the transfer functions and we are getting this.

So we can  rewrite  KLL Tz/Tps/1/Tz  by so,  you get,  basically  you can  design  the  lag  lead

compensator like this. Tp and Tz values are chosen to increase the phase margin, faster transient

response and increasing the bandwidth of the system. So this is the way you can actually do the

compensator. Now of course the typical compensator terms in our mind are the PI controller.

Proportional plus integral compensation.

(Refer Slide Time: 24:49)

Proportional-integral compensator are used to guarantee steady state error with acceptable rise

time.  The PI  compensator  are  a  particular  case  of  lag-lead  compensator. Therefore,  suitable

converter with good stability margin but poor steady state accuracy can be achieved. So this is

actually  PI  controller.  So  1+sTz/sTp.  So  you  can  split  it  like  that  and  you  can  rewrite  as

Kp+Ki/Ks. Or you can write it this term.

So this is the simple PI controller and which you can easily design by an op amp. So you can

have a proportional controller. So that is basically R1 and that is Rf and thereafter, you will have



a capacitor, that will, in a feedback path. So there bandwidth and you have to have a realistic

circuit and this will give you basically the Ti. So accordingly basically you can, this ratio can be

rewrite as 1/Tz, so this ratio can be Tz. And Kp is the gain of Rf+Ri. So this is a very simple way

to design and this compensator can be used.

(Refer Slide Time: 26:30)

Now we have discussed the limitations and if you are working practically, ultimately we think

that PI controller is the panacea that will offers you the solutions. But frankly speaking, no and

tuning of the PI controller is quite tough job. And for this reason, we have different controller

also.  Proportional  integral  plus  high frequency pole compensation.  So what  does  it  do? The

integral plus 0 pole compensator combines the advantage of the PI controller with the lag lead

compensation.

It can be used in converter with good stability margin but poor steady state accuracy. But steady

state accuracy is given by the PI controller. So this basically are the complementary of each

other. The frequency of 1/TM and 1/Tzs and these are carefully required to be chosen and the

compensations,  these will  be given into the assignment,  please  remember  that  compensation

lowers  the  loop  gain  at  a  high  frequency  while  only  slightly  lowering  the  phase  to  the

achievement is the phase margin.

So this is the linear feedback design using basically PI controller plus pole placement method we



say. So it is CILD, so basically what you have, it is the same plus you have placed the pole. So

ultimately, so Tz/pTM, so there will be a little modification. Ultimately it will be a second order

system and this pole will ensure that actually with a good stability and there is low steady state

error. Now there is another linear technique and which is used very frequently.

(Refer Slide Time: 28:54)

These are the proportional integral plus derivative with the plus high frequency pole. One of the

advantage of the derivative controller that it can predict the error because it will actually work on

the derivative of the error. And thus it can take the corrective actions while seeing that actually

rate of change of error. So thus it can act on the slope and correct that actually the, correct it very

faster but there will be a steady state error.

And  that  required  to  be  eliminated  by  the  PI  controller.  So  most  of  the  switching  power

converters,  2  complex  0's  are  selected  to  have  a  damping  factor  greater  than  the  converter

complex poles and slightly smaller than the oscillating frequency. So you have a combinations of

the LNC and thus you get a natural frequency of oscillations. So what we require to choose? That

this actually the converter complex poles slightly smaller than the oscillating frequencies.

The high frequency pole is placed to achieve the needed phase margin. So it will ensure that the

phase margin you require around 45 degree or something like that. The design is correct if the

complex pole locus, if you have multiple poles then it is loci, is heading to the complex 0 in the



system of the root locus. And never enters into the right hand of the x plane. That is actually the

optimality and the very fast design and it approaches the steady state, then it smoothens out.

So it is just like a lift, actually going at a very high speed, then stops jerkless. So you can write,

we have written actually say PID with the pole factor. So ultimately we will have a quite big

term, s  square+2zeta omega n,  then omega 0 is  the natural  frequency of oscillation and say

pS*omega 0, so you can calculate and ultimately you will have this term as well as this term.

This  term  is  the  PID and  this  term is  essentially  is  coming  from the  high  frequency  pole

placement.

To obtain the overall performance, PID is often inferior than the notch filters. So ultimately you

can actually combine them and ultimately you get this kind of thing and then something it can

have a response of a notch. We shall continue our discussion in our next class and we shall start

from this slide also because this slide require more explanations. Due to lack of time, I have to

stop here. Thank you.


