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Hello, welcome to this lecture on the course of computer aided power system analysis.

Till the last lecture we have covered various methods of the load flow analysis. From this

lecture and for the next couple of lectures, some lectures we would be looking into the

concept of sparsity and essentially the solution of the linear equations. So to start with let

us look at what is meant by sparsity.
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So we are looking at the concept of first, sparsity of a matrix. When you say sparsity, it is

sparsity of a matrix. Now when we call that a matrix is sparse matrix, so sparse matrix is

defined as a matrix, it is a matrix whose most of the elements are 0. Now the question is

how this sparse matrix is really relevant to our course or to this particular course or to our

discussion. So to understand that let us again revisit the Y- Bus matrix.

What is Y- Bus matrix? It simply shows the connectivity of the entire system. So Y- Bus

matrix, we know that if there is N- Bus system, this is given as Y 11, Y 12….Y 1N. Then

Y 21, Y 22…Y 2N and then …Y N1, Y N2…Y NN. So these are all known. And these



are of course all complex quantities that we have already seen. So these are all complex

quantities, that is fine. Now let us recollect that what these diagonal elements are.

So diagonal elements, if we just recollect that diagonal elements Y ii is basically sum

total of all admittances connected to bus i that we already know. And Y ij, what is Y ij? Y

ij is nothing but the negative of the admittance connected between bus i and bus j. So this

admittance which is connected between bus i and bus j is nothing but the line admittance

connected between bus i and bus j.
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Now to appreciate this, let us consider a system. I am taking just an arbitrary system say,

very arbitrary system I am taking, very arbitrary 1, 2, 3, 4, 5, 6, 7, 8 say 9 and 10 let us

say. So there are all 10 bus system. So there are let us say this is a 10 bus system. So

these are all 10 bus system, just taking an example. It is just an example. So all these are

buses and the lines are let us say connected something like this. So 1 and 2. So this is it.

And then let us say from here another one, then here another one and here to here. Then

here to here. Maybe here to here. Maybe here to here etc. So something like this. So now

if we look at any particular bus, any bus for example let us say bus 1 if we look at bus 1,

so then what is happening at bus 1. So if we look at bus 1 so there are actually 4 lines

connected to it. So at bus 1 4 lines are connected to it.



This is between 1 and 2 and then between 1 and 7, then between 1 and 9. Only 3 lines are

connected. So then therefore in the first row, so in the first row how many, so in the first

row the nonzero elements would be Y 11. Y 11 would be obviously the nonzero elements

because it would be nothing but the sum total of all this admittances; this, this and this.

And then Y 12, it will be nothing but the negative of this. Then Y 17 and then Y 19. Now

because this is a 10 bus system so then Y- Bus is basically 10 * 10. So then therefore this

matrix  has got 10 row and 10 columns but in the first row there are only 4 nonzero

elements. Rest 6 are 0. Similarly, if we look at bus 2, there would be only 3 nonzero

elements in that row. Similarly, for bus 3 there would be only 3 nonzero elements.

For bus 4 there would be 3, for bus 5 there would be 3, bus 6 3, bus 7 would be probably

5 because 1, 2, 3, 4 lines are connected. So 5 and etc. So then what we are seeing is that

although that it is a 10 * 10 matrix but then in each row not even 50% of the elements is

0, right? So then therefore in this matrix basically there is a so then therefore in this

matrix more than 50% elements are 0.

Because not every bus is connected to all the other bus. At best any particular bus is

connected to only hardly maximum 3 – 4 buses. So then therefore in any row most of the

elements are 0. So then therefore because more than 50% elements are 0 in this Y- Bus

matrix so then any Y- Bus matrix of any system is always a sparse matrix. So we write, so

we note that Y- Bus matrix is a sparse matrix.

Now the question is well even if this Y- Bus matrix is a sparse matrix how really does it

affect us in our calculation. So that is the question. How does it really affect us in our

calculation? Let us accept this fact that this Y- Bus matrix is a sparse matrix. But then

how does it really affect us. So to understand that let us look again back a Newton –

Raphson NRLF polar.
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In fact the same observation would be true in the case of Newton – Raphson rectangular

or even for FDLF but we are taking it NRLF polar as an example. So in the case of NRLF

polar we have this equation J 1, J 2, J 3, J4 and then we have got delta theta, delta V. Then

we have got delta P, delta Q. So these are all known. Now what is J 1? J 1 is essentially

del P i/del theta i and del P i/del theta j with the rider j is not equal to i.

And if we look at the expression of these two, for example if we look at this expression

of del P i/del theta j now we have got P i = the standard V i square * G ii + j = 1 to N not

equal to i V i V j Y ij cosine (theta i – theta j – alpha ij). If this is the expression so then

we have seen that del P i/del theta j the rider is j is not equal to i would be given by V i V

j Y ij sin (theta i – theta j – alpha ij).

Now in this expression V i is nonzero because this is the bus voltage. V j is nonzero, theta

is  nonzero,  theta  j  is  nonzero,  right?  But then Y ij  can be 0.  Y ij  is  nothing but the

magnitude  of  the ijth  element  of the Y- Bus matrix  and we have just  now seen that

depending upon the fact that whether any line is really connected to another bus or not,

this element Y ij may be 0, maybe nonzero.

That is if there is any line directly connected between bus i and bus j, this element Y ij

would be nonzero. On the other hand if there is no direct element connected between bus



i and bus j this Y ij would be 0. So then therefore depending upon the connectivity of the

system, this Y ij can be either 0 or nonzero. If this Y ij is 0 then automatically this would

be 0 irrespective of the value of V i, V j, theta i, theta j.

Or in other words the pattern of 0 and nonzero elements would be directly reflected into

this matrix J 1, right. So then therefore if any term G ij in the Y- Bus matrix is 0 right

corresponding to that term the element in this J 1 matrix would also be 0. Similarly, if we

also write down this expression of del P i/del theta i we will find that depending upon the

case whether Y ij would be 0 or not, that particular element would be 0, right?

Similarly, if  we look at  the expressions of  J  2,  J  3,  and J 4 we will  again find that

depending upon the value of Y ij,  that  means whether  there is  any direct  connection

between bus i or bus j or not, this matrix J 2, J 3, J 4 can have many 0 elements. So then

therefore because matrix J 1, J 2, J 3, J 4 individually can have many 0 elements so then

overall this matrix J, this is the big matrix J, Jacobian matrix, this is the Jacobian matrix,

this matrix will also have many 0 elements.

Or in other words this Jacobian matrix will also be sparse matrix. This set of equations

we know that we said that this is Jacobian. This is delta X vector and this is delta M

vector. So then this entire equation broadly can be written as J * delta X = delta M vector,

right? Now what we have said earlier that delta X should be equal to J inverse.

That is what we have said, that J inverse * delta M. But then we need to understand

something very interesting here. We have just now understood that J matrix is a sparse

matrix,  right?  now  depending  upon  the  number  of  bus,  this  J  matrix  can  have  any

dimension. For example this dimension of this J matrix we know that this dimension of J

matrix is 2N – (M – 1) * 2N – (M – 1).

So this dimension we know, so then this dimension of this matrix is 2N – (M – 1) * 2N –

(M – 1). So then therefore depending upon the value of N and M this J matrix can be very



large. For example if N is 1000 and M is let us say just 50 so then it would be 2000 – 51.

So 1949 * 1949, so many elements.

And if there is let us roughly 4 on an average, for example let us say if in this system

roughly if there is let us say 4 lines are connected at each bus, so then therefore this Y-

Bus matrix is roughly more than 80% sparse because in each row, because it is an N * N

matrix so then therefore in the Y- Bus matrix there will  be in each row is 1000 row,

basically 1000 column.
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And if  any bus is  connected to let  us say at  the maximum 4 or an average,  so then

therefore in  each row there will  be 5 in each row. So then therefore total  5000 total

nonzero  elements  in  the  nonzero  elements,  right?  So  then  the  percentage  nonzero

elements is 5000/1000 * 1000 * 100. So this is 5 and this is 200, just half percent. So you

see so then therefore this is more than 99% of this matrix is 0.

So then therefore the same thing will also be reflected here in the case of J matrix. So

then therefore for this J matrix also more than 99% elements will be 0. So then we have

got a matrix here where more than 99% of the elements is 0. And we are trying to store

all  the  elements  first  thing.  So  it  will  require  lot  of  memory  space  which  is  totally



unnecessary because for the purpose of calculation we only need to store the nonzero

elements, right? I mean 0 elements need not be stored.

Secondly, even if this matrix J is highly sparse that is even if this matrix J has got more

than 99% elements to be 0 but then when we are taking the inverse of a sparse matrix this

inverse of this J matrix is not at all sparse. It would be a full matrix. Full matrix means

that almost all the elements would be nonzero. So then therefore we have to store this

complete matrix, this particular J inverse matrix in our memory.

So then here we have got two issues, one issue is that we have to unnecessarily store the J

matrix where more than 99% elements is 0 which is not necessary. Secondly, we have to

also invert this big matrix which requires an highly computation intensive task and to

again subsequently store this completely full matrix. Now let us understand also one very

important thing.

At each and every iteration this matrix J is evaluated with the current values of V i, V j,

theta i and theta j. So then therefore after we evaluate this matrix J so then therefore what

we  have  got,  we  have  got  basically  the  numerical  values  of  this  J  matrix.  So  then

therefore for this J matrix, so then J matrix will have got some numerical value, some

numerical value which are constant values and maybe there will be some 0 values which

are constant values.

So then all these are let us say so then there will be some 0 value, some constant values

etc. But then all these values are either 0 or some constant values, right? So then therefore

it is a constant matrix at any particular iteration. So then what we are actually trying to

do? So when we are actually trying to solve this case that J * delta X = delta M what we

are actually trying to do? We are trying to solve a set of linear equation.

We are simply trying to solve a set  of linear  equation and these linear  equations  are

basically  a  set  of  highly  sparse  set  of  linear  equations,  right?  Now  so  far  we  have

discussed that to solve this linear equation we have to take the inverse of this J matrix.



But however, if we can exploit this sparsity of this matrices and then try to solve this

linear  equations  without  involving  this  Jacobian  matrix  sorry  without  involving  the

inverse of the Jacobian matrix then our computation burden can be reduced to a large

extent.

So then and precisely that is what which is being done in each and every commercial

software that no commercial software really undertakes the inverse of a Jacobian matrix.

Rather this set of linear equation is solved by some other method without involving this

inverse of this Jacobian matrix, right?

So in this course for the next couple of lectures or more we would be looking at some

method of solving a set of linear equation without involving the inverse of this Jacobian

matrix and where we can also exploit  the sparsity of this  equations.  Now one of the

technique for I mean solving a set of linear equations is called, a very popular technique,

Gaussian elimination method.
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So this Gaussian elimination method is actually solves a set of linear equations, right and

it is applicable to any large set that it is. Now let us look that how this particular Gaussian

elimination method works. So to understand that we will look into one simple example



and essential feature of this method is that it does not require the inverse of the Jacobian

matrix. Now suppose now to understand that, so let us take an example.

Suppose I do have a set of equations let us say A x = b where and let us take that x is a

vector  of  unknown quantity. So let  us look at  x,  let  us  take a  4 * 4,  so 4 unknown

quantities; b is the vector of known quantity say let us say this is given as b 1, b 2, b 3,

b4. So this is a vector of known quantities and A is a 4 * 4 matrix, constant matrix. So by

the normal routine we would say that x = A inverse b.

That is what we will say immediately. But then again it involves the inversion of this

matrix A and when we are talking about inversion of a matrix A we have to calculate each

and every element  of this  matrix.  So it  is really  a computationally  intensive task. So

instead of that if we apply Gaussian elimination method we really do not have to invert

the matrix A. So let us look at that how do we do this.
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So what we do is so let us say we have A is a 11, a 12, a 13, a 14; a 21, a 22, a 23, a 24.

These are the elements; a 31, a 32, a 33, a 34 and a 41, a 42, a 43, a 44. So this is the

matrix A. Please note that these elements a 11 to a 44 these are all constant values, real

values. So we are talking about a so we are basically saying that A is a real, this is a real

constant matrix.



Real  constant  matrix  means  that  where  all  the  elements  of  this  matrix  A are  real

quantities.  We are  not  talking  about  here  imaginary  quantities.  So  if  we expand this

equation so then what I will get? So then we have got a set of linear equations and those

set of linear equations would be a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 = b 1. Then a 21

x 1 + a 22 x 2 + a 23 x 3 + a 24 x 4 =  b 2.

Then we have got a 31 x 1 + a 32 x 2 + a 33 x 3 + a 34 x 4 that is = b 3. And the last is a

41 x 1 + a 42 x 2 + a 43 x 3 + a 44 x 4 = b 4. So if we expand all this set of equation a x =

b so we get these set of equations. Now we will see that how to solve this set of equations

without involving the inversion of this matrix.
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Now just to let us say I mean generalize this, if let us say A is an n * n matrix, if A is an n

* n matrix and x is an n * 1 vector where A is n * n matrix where this element are a ij

where a ij is nothing but the element corresponding to ith row and jth column. So this is

the element at ith row and jth column. And x is an n * 1 vector is x 1, x 2 to let us say x n

transpose T.

And let us b is also an n * 1 vector which is given as b 1, b 2 to b n transpose T. This T

basically stands for transpose. So then if we have got this so then if we expand this what I



get? I will get a 11 x 1 + a 12 x 2 + …a 1n x n = b 1. Then a 21 x 1 + a 22 x 2 + … a 2n x

n = b2. Then we keep on doing this; a n1 x 1 + a n2 x 2 + … + a nn x n = b n. So these

are the set of n – simultaneous. So we have got n – simultaneous linear equations where n

can be any value.

So these are n – simultaneous linear equations. So this set of n – simultaneous linear

equations can also be solved by the Gaussian elimination method. So we will first in the

next lecture, we will first look at this small example that how to solve this. And then we

will simply try to generalize it for solving the set of n – simultaneous linear equations.

Thank you.


