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Lecture – 19
State-of-the-art Digital Predistortion Techniques for Nonlinear Distortion in SDR

Hello everyone. So, in the series of software defined radios and practical applications.

We were discussing the digital predistortion techniques and in this lecture we will cover

the  linear  and  non-linear  both  the  techniques,  the  algorithms  and  the  results  in  the

practical system.

So, as we were discussing in the last lecture we have to select one of the topology and

once we have selected the topology with which we want to go for the modeling then

second concern is the selection of algorithms.
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So, they are several filtering algorithm in the literature, but first of all we have to see

how we can apply those algorithm. For example in linear filter theory we have some of

the examples where we do the fitting and in our Wiener Hammerstein’s model we are

using a fir. So, we will start our discussion from the fir filter there fitting and then we

will take the non-linear to linear mapping for the memory polymer model and we will

show how we can apply those in the non-linear terms.
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So, for a fir model our y n was a function of input signal and its previous values of the

input signal m is memory depth here. So, basically we can represent the same thing as a

matrix also. So, if we take different value of n from n, n equal to 0 to 1, not 0, it will

have integral value positive integral value 1, 2 up to n.

Then we can basically represent this as y 1, y 2, y 3, up to y n output and x n can be

represented as x 1 x 0 x minus 1 and so on till mth value and coefficients can lie here let

us put it a m. So, it will be a m here with will be, which will be with respect to this one.

Similarly it will have all the value is still x capital N and this value will be x n minus m

plus 1. So,  by arranging this  values it  will  be x 2 value then x previous value its  o

previous value x minus 1 and so on.

So, we can arrange this term as this one also. So, we can represent this as Y, this as X and

this one as A. So, A will be representing the coefficient matrix, this X will be observation

matrix which is including all the input data, actually this matrix coefficient matrix can

also be called coefficient vector it is simply a vector and this will be the output vector,

output signal vector right.

So, if we are able to represent it in this way then easily by using matrix calculations we

can calculate our coefficients here. So, what will be coefficient here? It will be X inverse

Y. Now, if this matrix x is not square and if it is it may be singular then that inversion it



is  not,  one not possible.  So, we have pseudo inverse techniques  which takes care of

inversion process even if this is not a square when if it is a rectangular kind of matrix.

.  So,  normally  they  go  with  the  pseudo  inverse  techniques  such  as  Penrose  Maury

inversion technique. So, this is the basic arrangement of the data here. So, observation

matrix output vector and the coefficient vector will be there. Now, it was for the fir filter

which we use in the Wiener Hammerstein how we will calculate our coefficients in the

non-linear filter. So, for the neural networks it is contained a different kind of processing

they use step by step techniques, but for the memory volume voltage series when you are

using polynomial we can do non-linear to linear projection technique.

What is this technique? Basically here if you look at this it is a linear algebraic condition

which we are imposing here and we are solving for that one, when we are talking about

non-linear terms if we can do the projection. So, that non-linear terms can be represented

as a linear term then we can still use this equation. And how can we do? So, for example,

if our function is y is equal to a 1 x square we know that is a non-linear equation , but if

we select x square to be some other function let us say x 1 then with respect to x 1 and y

it is a linear equation. So, by choosing x 2 equal to x 1 we can still calculate a 1 using

linear techniques. And this is what we call non-linear projection.
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So, this is what we can easily use for the non-linear  memory polymer. For example,

memory polymer equation is given as summation over j from 0 to n minus 1 sorry K



minus 1 because K we are using for the nullity order and m from 0 to M which is M is a

memory depth which we have discussed in the last lecture and this was the equation for

the memory polynomial.

Now, how we can we will do this projection which I which I was talking about? Now

instead of this equation we have to map this equation. So, in this equation also we have

some coefficients which are dependent on m and j and this coefficient we have to find

using this kind of techniques.

So, can we arrange this in terms of matrix and can we apply the linear techniques this is

what we have to see. So, y again we can arrange from 0 to n for the n number of data and

after that observation matrix has to come into picture.
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No, observation matrix will contain x 1, x 1 at absolute of x 1 and so on for n equal to 0

right.

So, let us make this so that we can understand all these terms together. So, for m equal to

0 we have done the calculation till here x 1 absolute value of x 1 to the power n, not n we

are taking it to be K, K is our nonlinearity order right for m equal to 0. After that in the

next column we start taking values for m minus 1. So, m equal to 0 is this one and then

we take m equal to 1 terms means previous values. So, x 0, x 0 and absolute value of x 0,

x 0 until m we can keep do this.



For example, we have done this for m equal to 0 then we had done for m equal to 1 then

m equal to 2 and then finally, for m equal to capital M right. So, it will be what? 1 minus

M x 1 minus M absolute of x 1 minus M next will be squared and last term will be x 1

minus M to the power K and this will be its observation matrix.

Now, next term x 2 and the same thing x 2 x vector will be here will be x 1 and x 1 x 1

and will be x 2 minus M and so on. So, here what we have done our non-linear kernel we

have represented in one, one column, so now, we can again apply our linear equation.

So, after we have defined our observation matrix it is our y this is let us remove this

equation now which is the equation some memory polynomial. This is whole equation is

our x which is the observation matrix and as you can see if I multiply this whole equation

with new vector. So, let us make some space here let us suppose this matrix finished here

and this is to the power k, then we can again multiply our a M K all right.

So, we can define our coefficients here according to all the values of M’s as well as K

and  then  we  multiply  we  get  our  output.  So,  basically  again  we  can  represent  our

equation in a linear first session and if you solve this function because we have done the

projection we have put the non-linear terms in one element of this matrix, we have done

the mapping of non-linear to linear . So, we can easily calculate our a again using the

inversion of this matrix in by using pseudo inverse methods.

So, this is the way we can arrange our matrix and once we know this relation then their

different type of algorithms which we can select to make it more easier there. So, there

can be two types of processing well  one its batch mode. This example which I were

showing you here what is, what is for the best mode because you are using from data

from 1  to  n,  nth  sample  at  one  time  for  make  making  matrix.  But  sometimes  their

applications when the system is changing very fast in that case you want to do sample by

sample data sampling it  means you will  be using only first  element  of this  and first

vector of this and only this one.

So, we are not using batch mode anymore and it is sample to sample adjustment of the

data.  So, why is being processed only for single data at a time with total  number of

coefficient. In both the cases you will notice that number of coefficients are same in one

case we are using complete matrix to include n data in one case we are processing one

data at a time. So, by based on our applications whether our system is changing fast or do



we want fast  convergence then we can choose our batch mode or sample to sample

processing.

So, in the batch mode processing we have basically least square methods and recursively

least square method. So, what is the least square method basically? That you arrange

your output matrix, you use your observation matrix and you define your coefficients and

based on this batch mode you can apply your least square method.

(Refer Slide Time: 14:07)

So, by using pseudo inverse of this X you are able to get dual coefficients. So, it is one

step process because once you have defined your Y and X observation matrix in one step

for n data you will have single solution.

Now, least square method because you are using block base processing and you need to

do the pseudo inverse. It will take more resources in digital computation because doing

the inversion of the of any system it is a difficult thing and resource consuming thing. So,

because of that there are many methods where they try to reduce the complexity of this

kind  of  method,  and  those  kind  of  method  tried  to  make  this  pseudo  inverse  more

efficient. So, it is least squares method using pseudo inverse.

So, in this case your A becomes , so , by for calculating this portion which is the pseudo

inverse if you see; if I wanted to do X inverse Y it will be inverse of that has been instead

of using that we are using this quantity which we use in the least square method . Their



methods  which  is  ah  singular  vector  decomposition  etcetera,  we  where  you  try  to

minimize the complicity of this portion. So, this is a entirely different research area. So,

we are not going deep into it,  but we just want to maintain that this is the one step

method and it converges very fast.

In sample to simple processing you have gradient descent method and the mean square

algorithms quickly going through those methods for the overview. GD method is the best

gradient  method  these  are  means  of  this  method,  and  this  method  we  update  our

coefficients given by this equation, where this g n is actually gradient of this cos vector

with respect to weights, and this cos vector is actually mse mean square error of the

output.

So, you get your estimated output, you get the mean square error J is equal to 1 upon N y

n minus y estimated whole square. You define this and then you see its variation with

respect to w by differentiating it and in the real life if it not differentiation you did take

the difference  with respect  to  the  previous  step and you apply this  formula,  and the

coefficients can be adjusted by using the previous coefficient value and the new gradient

value.

Again you can see it is a sample to sample processing method because you are taking 1 n

at a time, you are not taking n equal to 0 to n sorry from 1 to capital N in one shot, .

Instead of that  you are sampling  taking one and then here processing updating your

coefficient value and then you are taking second and even updating and processing these

values.

So, for a stochastic method where you know there are non-linear system and you are

using variance and mean, those kind of system it was proposed basically; to simplify for

the deterministic signal like we are using right now where we have the signal in our hand

and we want to work on the based on that data least mean square method can be used, the

statement of this one is. So, it is u n, let us make it x n because we are calling input

signal as x n. So, again it is sample to simple processing.

You need the conjugate of e n which is the error y n minus y estimated and the conjugate

of that one the original input data and that this is a step function in the both of this. We

can select it by ourselves to see the convergence performance and we keep tuning our w

to get our best performance till this y minus y n becomes minimum.



All these methods they are trying to minimize this mean square error, so basically if it is

number of iterations , so because it is mean square error if we draw this with respect to w

for particular value of w it should be able to get this minimum value of J mean. So, in

least square they try to get in one step somewhere near here and gradient descent and

LMS method they try to come here slowly stepwise. So, this is what we are getting here.

Iteration wise least square is one global solution. So, whatever you will get in one step

let us say with iteration you will have 0, 1 and one iteration you will have your least

square solution for gradient descent and the LMS they will be reaching here slowly. So,

if we I say LMS and gradient descent somewhere they will be working like this with

many iterations.

So, we can see here the processing here is very much simpler does the multiplication of

two terms and the addition and here little bit complex with respect to this one because

you have to calculate the gradient. The benefit here say is that gradient descent method

can actually reach near to this point, but in LMS because we are moving the gradient

value the stochastic ah property is coming back into picture because of that it just keep

rotating here and here in LMS methods. In least square method it is trying to reach here

in one step.

So, these are these methods. These methods are simpler to implement less computation

least square method you have to do the inversion you have to deal with the matrix. So, of

course, it is more complex method. So, while keeping this in mind recursively square is a

compromise between these two. So, if least square is getting here and LMS and GD are

just reaching here RLS is giving you convergence somewhere in between ok. So, if it is

LS, LS it is GDN elements then in between it will be RLS.

And again it is a compromise in terms of complicity also. So, quickly if you look at the

equations instead of using simply one weight update coefficient update equation we have

set  of  3  four  equations,  but  we  are  not  using  inversion  here.  It  is  simply  the

multiplication and division of the terms.
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So, in this kind of system we define our vector P by ourselves we choose some P and

based on that P we define our k n, u n is our input signal here . Once we get our k value

we calculate our alpha n value which is basically the error, if you see a desired value

minus input signal into weight vector, so just the error. So, this k and error is multiplied

with the previous value of k n and it looks very much like this method done apart from

the fact that we have to calculate k n and p n here.

So, complicity is lesser than the least square method, but higher than gradient descent

and LMS method and convergence speed is faster than these two. So, it is compromise

between LS and LMS techniques for this one.
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There  are  several  methods  in  the  algorithm wise which  you can basically  if  you go

through the Simon Haykin’s adaptive filter theory from the Pearson education, India ah.

This version is available in India. Then many details on this algorithms you can perceive

from there.
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But basically once you select the topology this kind of algorithms you can select easily.

So, you have selected the algorithms, let us say we have selected least square method and



we have decided we will go with this method and we will select our topology based on

this method.

So, for memory polynomial  model we have to select  memory depth and we have to

select non-linearity order. So, how do we do that? We keep changing the nonlinearity

order from 0 to some value let  us say 20th,  and we also keep increasing number of

memory depth and we plot them together or we just observe then and whenever it is

converging.  So,  it  is  a  hit  and trial  method in this  case we can see that  if  we keep

increasing number of memory order non-linearity order sorry for m equal to 0 then our

system  response  model  performance  in  terms  of  ACEPR,  we  have  defined  ACEPR

earlier adjacent channel error power ratio which is for the auto of band modeling error it

is converging at nine ninth order. So, k equal to 9 should be able to give us good order.

Now, if we use m equal to 0 or if you use m equal to 3, we can see there is a difference of

2 3 db, when we use only m equal to 0 and when we use m equal to 3. So, m equal to 3

and n k equal to 9 is giving us good convergence. So, we can choose this value as our

model topology, so m equal to 3 and k equal to 9.

Say at the same trend we can see for in terms of NMSE also we are plotting an NMSE

for m equal to 0 which is this one and m equal to three which is this one and we can see

that it is also converging at n equal to 9 and again m equal to 3 is giving much better than

m equal to 0. So, we keep changing from equal to 0 to 1 2 3 and similarly from 0 to any

value of non-linearity order or when it is starts to saturate or become even worse then we

will  stop  at  that  point.  Because  if  you  keep  increasing  here  we  will  get  the  same

performance, but our complexity is increasing right, because we are increasing number

of multiplications and additions, so it is better to stop at this point. So, this way we can

choose  our  topology  and  then  by chosen  topology  and  algorithm we can  apply  our

model.
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So, here for a practical system Doherty power amplifier we are showing the actual PA

characteristic, so in the left hand side figure we can see that our AM, AM is given by this

red curve which is the gain, and just normalize gain, so this around 0. We have removed

the small signal gain so that we can just see its performance.

Similarly, phase difference which is AM PM it is again around 0 it is shown by black and

we can see it is very non-linear system. So, by doing the inverse modeling means by

using  input  as  an  output  and  output  divide  by  small  signal  gain  as  an  input  as  we

discussed in the last lecture.

We again do the modeling using neural network and I am showing the modeling results

here  in  the  right  hand panel  and you can  see that  gain  curve  is  this  one  which  we

received from the model and the phase term is this one which also we received from the

model and if is even by our own eyes we can see that non-linearity profile is inverse of

what was for the power amplifier. So, we have a hope that it should be able to correct for

the PA non-linear to here. So, this is what we will see here.
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In this case when there is no DPD, no distortion was there this black curve is showing

power amplifier output and we can see that auto of band distortion is here it was the

original  signal.  3  carrier  signal  which  has  one  missing  carrier  and third  carrier,  if  3

carriers are on for this wcdma signal we can see this is the profile and this is the auto of

band distortion which can which is comparing because of the power amplifier.

Again we can see when we apply our DPD then for memory less model when I am we

are using m equal  to  0 in  both the cases this  red one is  the  result  of the DPD. So,

investment is working very perfectly there is ah reduction there, but if we increase m

equal to 1, 2 and 3 we can see that it is even becoming better and better, both reduction in

the auto of band destruction is happening in both the cases. So, this was an example with

the LDMOS class AB amplifier and it was using the signal with the 10 dB PAPR.
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Now, we can go to the effect of IQ imbalances ah. We had seen the effect of power

amplifier non-linearity and how we can use DPD to compromise on that one. Now, apart

from the  power  amplifier  non-linearity  we  have  discussed  IQ imbalance  earlier  and

because of that IQ imbalance we also see some extra additional distortion such as in the

consolation diagram there is a tilting of the phase and the distortion which is more than

the original signal constellation at the signal constitution point. So, we want to reduce

this vector also.

We have discussed the image appearing because of the IQ imbalance and this is what is

appearing here we can remove this effect also using this digital pre-distortion. And in the

next class we will be discussing this effect and how we can reduce this by using our

digital pre-distortion techniques.

Thank you.


