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Welcome to all. So, today our class is on linear quadratic optimal control system. In the

previous  class  we  completed  our  discussion  on  variational  application,  variational

calculus  application  to  the  optimal  control  system  and  in  this  we  have  develop  an

approach  in  which  in  terms  of  the  Hamiltonian  we can  represent  our  system where

Hamiltonian is defined as v plus lambda prime f.
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And our equations can be represented as the control equation del H by del u equal to 0,

del H by del lambda equal to x dot which is my state equation, del H by del x equal to

minus lambda dot which is my costate equation. These equation can be solved and the

constant or the final solution can be determined utilizing the different boundary condition

which comes up from the last equation.

So, now, application of this we will see to the linear quadratic optimal control system. As

we all know what is a linear system.
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Any linear system in term in the study space we can represent it as x dot t equal to A of

sorry, we take a general system which will be A t x t plus B t u t and point t we can

represent as C t x t plus D t u t. So, objective here for the given linear system we have to

develop a control low, control low are normally we take as u equal to sorry; we say this

as u t equal to minus K t x t,  so that we can control the system. And then the what

condition we can control the system? If my system is completely controllable then I can

control  the system means I  can  transfer  the  state  of  the  system from a given initial

condition to some final condition in a given time, so that is my objective. 

So, how to implement this control? Now this system I can represent in terms of the block

diagram as sorry till this as B, this is integral, I take this as A and further if I will extent.

So, this is my x dot of t, this is x t. So, x dot of t is A t x t plus B t, this I will take as u t

and let us say this as my reference R t equal to 0 and C t x t will and as we have seeing if

I will take this u I can pick up from here with D t, so this will be my y t. So, y t is C of x t

plus D of u t.

So, this system I can represent in by this block diagram, objective here is to implement

the control low u t equal to minus K t x t. So, in this case let first we consider R t is dot 0

then control low we can implement as feeding back the states as a negative feedback to r

t. So, if I will consider this case let us first case u t equal to R t minus K t x t. So, this is a

journal control, state feedback controller problem where we have to design the K t such



that I can transfer my state from x t 0 to some x t f in a specified interval of time t 0 to t f.

So, in this interval I want to transfer my state from initially state to final state for which

we have to design a control low which way be R t minus K t x t. So, this is my control

problem. 

Now how to get the value of the K t there are the main approaches in advance control

system we  know  we  have  the  pole  placement  technique  by  which  this  K  t  can  be

determined. Now as if we will make R t to 0 what is the meaning this? My reference is 0,

so if R t is 0 so my control low is nothing, but u t equal to minus K t take x t. So, this

problem will become the regulator problem. So, in this we will,  we do not have any

change in the set point my set point is fixed, my system is subjected to the disturbance

and with this disturbance system will again return to its operating point. So, that is called

my regulator problem if R t will become 0.

So, I can also set let us say I have the 2 states x 1 x 2 and any operating point. So, let my

system is start with x t 0 from here. So, after the disturbance it will return to the same

point which is my operating point. So, this operating point if my R t is 0 I can take this

operating  point  at  the  origin  by  simply  using  my  shifting  the  origin  principle.  So,

anytime I can shift my origin to this point. So, my problem here will be my from x t 0 I

have to transfer my state to x t f equal to 0 where t f is specified. So, this is called my

linear  quadratic  regulator  problem  which  we  call  linear  quadratic  regulator,  very

famously we write this as this is my LQR problem.
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So, if you we will look at this we are defining a system as x dot t is A x t plus B u t y

equal to C x t. In general we can consider the D matrix to be 0 this means if these person

then you will have the direct influence on the y, in most of the physical system I have D

equal to 0. So, we are representing our system simply as y equal to C x t. So, this is my

linear time varying system because A B C all are the function of time we are varying

with  the  time.  So,  initially  we are  considering  a  general  linear  time varying  system

objective is to keep the state x t near 0. So, this is a state regulator system.
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We want to obtain the control u t which takes the plant for nonzero is state to the 0 state

and simultaneously minimize the performance index. In, as we are reaching transferring

our nonzero state to the 0 state, so this means my R t is 0 and the plant is subjected to the

unwanted disturbance that part of my system. 

So, this regulator problem in this regulator problem our objective is to find the value of

the K t and that is particularly optimally. If we have in a regulator u equal to K t x t as we

said we can find this control low using many other approach one of the approach is the

pole placement technique in which we specify where my closed loop system pole will

lie. So, in LQR problem I will keep the system.
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So, as u equal to minus K t x t if I will place this, so x dot t will be A t x t plus B t and in

place of the u I am placing my minus K t x t so I feel combined the x term. So, my closed

loop system will be A t minus B t K t and this whole is x t. And this whole I can represent

as my close loop matrix.

So, I can say this A t is a open loop matrix and A c l is my closed loop matrix. So, after

implementing the control low my objective here is whatever be the condition of the A t

this A c l a closed loop matrix will be a stable matrix and have the desired performance

characteristics,  because  in  a  linear  system  matrix  A  is  my  system  matrix  which

completely governs the performance of my system. So, using the in a pole placement

technique what we want, my closed loop system will have the desired poles which is



already specified we are about to shift my eigenvalues of A in A c l means whatever be

the eigenvalues of A in closed loop system I will shift my eigenvalues from, I will shift

my eigenvalues to the desired location.

But in this case we cannot guarantee whether my eigenvalues are shifted optimally or

not. So, that is why we have the state regulator problem to be solved optimally. So, that

is why we are saying we our objective in linear quadratic optimal control system is to

determine the u which will take the plant from nonzero to 0 state and simultaneously

minimizes a performance index performance index.
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Here we take as 1 by 2 x prime t f, f of t f, x of t f, 1 by 2 integral t 0 to t f x prime q x

plus u prime r u. So, because my performance index is quadratic in nature we call this

problem a quadratic optimal control problem. So, if for a linear system this quadratic

performance index we can select what this performance index will have, the first term

one by 2 x prime t f F t f x t f represent my terminal cost which will depend on my what

is my final state plus half of x prime q x. Now what actually is the x? In quality case if

we consider my final state to it origin so this and this is my and initially state. So, at n

instant of the time this is representing nothing, but the error in the state. 

So, at n instant this is representing because my desire is 0 minus whatever is the state at

that particular time. So, desired state minus the actual state giving me nothing, but the

error and the desired state is 0 so this I am getting nothing, but error. So, the first part of



integral performance index x prime Q x this nothing but used to minimize the error and

second u prime R u is used to minimize the control effort which we have taken as the

energy. So, this u prime R u is nothing but to minimize the control effort, minimize the

error, minimize the terminal cost

So,  we  have  selected  the  performance  index  which  is  quadratic  in  nature,  which  is

minimizing by terminal cost, which is minimizing my error, which is minimizing my

control efforts and matrix form we can write this as x prime u prime matrix Q and R, x

and u. So, in this performance index we have taken as the F of t f, Q of t, R of t.
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What these matrices represent here? These are the weighted matrix Q t R t and F t are

they are symmetric in nature normally F t is positive semidefinite Q t is also positive

semidefinite, but the matrix R t should be a positive definite. And there is no constraint

are considered in this particular case. F is positive semidefinite means some of the state,

weight given to some of the final state may be 0.

Similarly, weight on the state at any instant any state I can make it to 0, but anytime I

cannot make any control to be 0 because all  my system is controlled by the u t.  So,

always the certain rates I have to give to all my controls. So, that is why we are selected

R to be the positive definite. So, we will take F positive semi definite, Q as positive semi

definite, R to be the positive definite and we are not considering any constraint on the

control.  So,  I  have  my plant  which  is  given  as  x  dot  is  A x  plus  B  u,  I  have  my



performance index given as the J u and the this problem we have to and our objective is

to find the u which will minimize the performance index as well  as satisfy the plant

condition.

So, if you will recall this was my variational approach to the control problem. So, we can

directly  use  my  Hamiltonian  approach  to  solve  this  problem.  So,  we  have  to  use

equation, control equation,  state equation and the costate equation to solve this linear

quadratic optimal problem.
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So, my first steps to write the Hamiltonian H which is equal to my v plus lambda prime

f. So, what is my v? v is nothing, but my quadratic function which is x t Q t x t plus u

prime R u and this whole we are dividing I taking as 1 by 2. This 1 by 2 is used to only to

simplify the calculation which is come in the later part. This is my v plus lambda prime t

into F. What is my f? Here x dot equal to A x this is A t x t plus B t u t.

So, I am taking this as my H which is half x prime Q x plus half u prime R u plus lambda

prime A t x t plus B t u t. Lambda t is my Lagrangian multiplier, here we will take as a

costate vector because my system is of the nth order therefore, the order of my lambda

will also be of the nth. So, lambda is a nth order costate vector. 

My first equation is del H by del u equal to 0. So, in the given H if I will differentiate this

H with respect to u this is this time is a function of u and in the second my this lambda

prime B u t is a function of u. So, their differentiation if the first time will give me 0

second because u prime R u this will be cancelled out so this will given me as R t u t and

if I will differentiate this plus B transpose lambda t. So, differentiation of del H by u

prime R u is R t u t and lambda prime t B t u t is B prime lambda and this must be equal

to 0. So, therefore, I can directly write my u t to be minus R inverse B prime transpose

lambda t. So, we got this equation has u equal to minus R inverse B prime lambda t.
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Then I have to write my state and the costate equation. State equation is x dot equal to

del H by del lambda. So, del H by del lambda if we will take, so this is my control state

equation is x dot t equal to del H by del lambda and what is the value of this.

So, the first term is independent of my lambda. So, this all will not give me anything and

this will give me with respect to lambda. So, this is nothing but my A t x t plus B t u t I

am getting and u is we already got R inverse this, so this will be my optimal value. So,

this is nothing, but my A t. So, I can say this will be my optimally state as A t x t minus

sorry; B t R inverse B prime lambda t. So, this will be my state equation costate equation

lambda t equal to minus del H by del x is my nothing but lambda dot t.

So, my first term is a function of x. So, this is giving me due to this negative sign Q t x t

and another x dependent term is lambda prime t A t x t I have to differentiate this term, if

I  will  differentiate  this  term we will  get  minus  A prime  t  lambda  t.  So,  here  prime

remember  represent  my  transpose.  So,  we are  saying  this  is  the  A transpose  and  B

transpose. So, I got the 2 equations as x dot is A t x t minus B t R inverse t B prime t

lambda t and the costate equation is lambda dot minus Q t x t minus A prime t lambda t.

So, these 2 equations we are getting here and this equation I can write in this particular

form which is called the Hamiltonian system.
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So, I am writing a state and the costate equation in terms of a matrix form some clubbing

x dot of t lambda dot of t is x t lambda t. So, with the x t I will have the A t matrix A t x t

minus B t R inverse t B prime t and second row is minus Q t minus A transpose t. So, I

got this equation where t I am representing as B t R inverse B prime. 

So, using this we have converted this into the Hamiltonian system. So, this is giving me

the state and the costate equation which is converting my system into the Hamiltonian

system.
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Next is my boundary condition here, the general boundary condition given as H plus del

S by del t delta t f del S by del x minus lambda star t delta x f equal to 0. Say in this case

if you will recall what is my problem, my problem is to transfer the state from initial

state which is x t 0 means t 0 and x t 0 both are given to me to the final state in a

specified time this will the t f is a specified. If t f is a specified, so this delta t f will be 0,

so I have left only with the del S by del x minus lambda a star t at t f point delta x f. So,

if I will consider my delta t f to be 0 I am left with the condition del S by del x at t equal

to t f point minus lambda by star t say lambda by star t f at the t f point that must be equal

to 0.

So, my lambda t f is nothing but del S by del x at t equal to t f point. Now if you will see

what is my terminal cost, my terminal cost is half x of t f, f of t f sorry, x prime of t f, x

of t f x of t f and this is nothing but my S, S equal to this. So, this means if I have to

differentiate this with respect to x. So, this is nothing, but del x of t f of this my half x

prime t f this is my S, F of t f x of t f this value I have to find and this is nothing but my F

of t f, x of t f, this is giving me lambda of t f. So, by this we got my lambda t f of f of t f,

x of t f. So, I am getting my lambda of t f of f of t f and x of t f. So, this is my terminal

condition. So, what I will have here? I have my Hamiltonian system given as x dot t

equal to A t minus B R inverse B prime minus Q minus A. So, this is my Hamiltonian

system with final condition as lambda star t f equal to F of t f, x of t f. 

So, today we stop here and in the next class we will complete our derivation to obtain the

optimal control law for a linear quadratic optimal control system.

Thank you very much.


