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Proof of convergence - Part 2 

This last term on the right-hand side, can we see something is getting clubbed together? For 

example, do I know if 𝛼∇𝑓𝑘 − 𝑥𝑘 is anything that we already know? It is 𝑦, it is the negative of 

𝑦𝑘+1. And so this term will simply become, what will it become? It will become 𝑥∗ − 𝑦𝑘+1. So, 

this is, this is good because I have now brought 𝑦𝑘+1 into the picture. Bringing 𝑦𝑘+1 into the 

picture is good because that will be the next step once I get 𝑦𝑘+1, what is the next step from 

𝑦𝑘+1? Projection. So, 𝑥𝑘+1 will enter the picture. So, I want 𝑥𝑘 and 𝑥𝑘+1 both to enter the 

picture. 

 

I want this intermediate guy 𝑦 to be gone so that I do not have too many of these variables. So I 

have got 𝑦𝑘+1 into the picture. So let us just rewrite this over here. 

So, 
1

2𝛼
, okay. I have 𝑥𝑘 − 𝑥∗

2
. I have 𝑦𝑘+1 − 𝑥∗

2
, okay. And this is a positive term. So this is 

going to be 
𝛼∇𝑓𝑘

2

2
, right? Are we in a position now to telescope the series? Not yet. 

I still have my 𝑦𝑘+1 sitting there. So, let us look at this geometry over here. I have 𝑦𝑘+1 and 

𝑥𝑘+1. Let us connect 𝑦𝑘+1 and 𝑥∗ also, right. So I am going to connect all the guys that are there 

in the expression. 



Oh, there we go. All of these guys are connected. So 𝑥𝑘 − 𝑥∗, this guy, is it here? It is this guy, 

right. And then I have 𝑦𝑘+1 − 𝑥∗, that is, let me use another color, that is here, that is here, okay. 

So these two, these are the guys over here, okay. 

Now, because 𝑦𝑘+1 projects to 𝑥𝑘+1, can we say something about the distance of 𝑦 to 𝑥 and 𝑥𝑘 to 

𝑥? Will there be some kind of an inequality? Which will be closer to 𝑥∗, 𝑦𝑘+1 or 𝑥𝑘+1? 𝑥𝑘+1 

because it is the projection, right. So, let us, we are assuming it is a convex set. Yeah, yeah, all of 

this is based on a convex set. So, 𝑦𝑘+1 − 𝑥∗, this distance is obviously greater than 𝑥𝑘+1 − 𝑥∗. 
That is clear from the geometry. 

So, I am not writing convexity because it is true for, I mean we wrote it at the beginning. So, just 

one moment where you have to be a little bit careful. 𝑦𝑘+1 − 𝑥∗ is greater than 𝑥𝑘+1 − 𝑥∗. If I 
substitute this into the above expression, will the inequality remain the way it is? Yes, because 

there is a negative sign associated with it, right. So, this can be, so let us substitute. 

So, this will be 𝑓𝑘 − 𝑓∗ ≤
1

2𝛼
, this term remains as it is and this term will become 𝑥𝑘+1 − 𝑥∗2. 

So, we are now, you can see that I mean what I had in mind of telescoping will actually work 

now. I managed to eliminate 𝑦 out of the picture and I got, so it has the current iterate, it has the 

next iterate and very nicely what they have opposite signs. One has a plus, the other has a minus, 

okay. Is everyone clear at this point what we did? We have simply used this one property over 

here that the projected point is closer to the solution point than the point which is farther off and 

of course this is only true for on the convex set. So, now let us. 

 

So, I will just write down a few terms. What will be the very first term on the left-hand side? I 

had look at your notes. First term would be for in terms of 𝑓, 𝑓0 − 𝑓∗, less than equal to. First 

term will be ∥ 𝑥0 − 𝑥∗ ∥2, then ∥ 𝑥1 − 𝑥∗ ∥2 plus what? 
𝛼

2
∇𝑓0

2, right. That is the first term. 



Everyone agree? 
1

2𝛼
. Now, if I keep going like this, I am going to get finally 𝑓𝑘 − 𝑓∗, supposing I 

write it like this. This 
1

2𝛼
 is there. What am I going to get? This is going to be ∥ 𝑥𝑘 − 𝑥∗ ∥2 −∥

𝑥𝑘+1 − 𝑥∗ ∥2. And now if I telescope the series means to sum the left-hand side and right-hand 

side. 

What am I left with on the, what am I left with on the left-hand side? Does anything cancel? No, 

right? Life’s like that. These terms don’t cancel. So, I have a summation 𝑓𝑖, 𝑖 going from 0 to 𝑘, 

okay? And what else do I have? How many times has this guy come? 𝑘 + 1 times. So, 𝑘 + 1 

times 𝑓∗. What is left over here? 
1

2𝛼
, the first term and the last term. 

Those are the guys that do not cancel out. So, I have ∥ 𝑥0 − 𝑥∗ ∥2 −∥ 𝑥𝑘+1 − 𝑥∗ ∥2. Does this 

other final term cancel? Negative. So this guy is going to be there as fine. Now this is the part 

where you have to get a little creative. 

 

So, I have, if I have any negative terms on the right-hand side, if I knock them off, will the 

inequality change? No, right. So, I can as well write this as 
1

2𝛼
∥ 𝑥0 − 𝑥∗ ∥2+

𝛼

2
∑∇𝑓𝑖

2, right, 

because the second term does not affect the inequality. So, we are getting there. This term over 

here I am going to pull out 𝑘 + 1 common from here, 𝑘 + 1 if I take common from here, what do 

I have? Still not looking very good, right? I have this entire summation of function values on the 

left-hand side. 

Now, this is the time when we pull one more, see there are only a few inequalities that are used. 

Can you name some inequalities that you know of? Cauchy-Schwarz is one, AM-GM is one, 

there is another one which is called Jensen’s inequality. So, this is the time to pull the Jensen’s 

rabbit out of the hat. So, if I look at Jensen’s inequality and Jensen’s inequality for a convex 

function. Does anyone know what it is? This actually you can appreciate from the figure. 



I will write the inequality and then you can. In words, what is this saying? Function of the 

average point is below the average of the function values. So, when we drew this figure over 

here. Yeah, this is assuming 𝑓 is convex. I mean it is the same as convexity. 

Yeah, yeah, right. So here you can see function, so function of average. So the average point is 

for example over here, this green point over here and the function value is here. This is below the 

average of the function value which is the dashed line. The dashed line is 
𝑓(𝑥)+𝑓(𝑧)

2
. So, that is 

this pink point over here. 

So, you can see this is, you can call it Jensen’s inequality or you can say this is basically the 

definition of a convex function. So, let us scroll back over here. Because that’s the only term 

with, why did I pull out the term 𝑥𝑘+1 − 𝑥∗? Because that’s the only term with a negative sign. I 

want to simplify this expression as much as possible. 

It’s a negative sign. So imagine for example, this is, let’s, okay. So imagine that the left-hand 

side has a value of three, okay. This is say five and this is one and this is 0.5. So, what is the left-

hand side? 3 What is the right-hand side? 5 minus 1, 4. 

4 plus half, 4.5. Now, if I remove this term, the inequality still holds, right? So, any negative 

term is not adding to it. So, my goal is to simplify this expression as much. You can see, did it 

affect, I got rid of a minus 1, did it affect the inequality? It did not affect the inequality. That is 

what I am interested in. If it were an equality, I would not be able to do this. 

But it is not an equality, it is an inequality. So I have that freedom to play around with these 

terms. Did everyone follow? It does not matter, right. I am making a true mathematical 

statement, right. 

 



So we are almost there. We can substitute this Jensen’s inequality. We are, I will, the next step 

will show you what we are trying to get at. So, I will write down the final expression after using 

Jensen’s inequality, right. So, 𝑓 (
𝑥𝑘

𝑘+1
) − 𝑓∗ ≤

1

2𝛼
∥ 𝑥0 − 𝑥∗ ∥2+

𝛼

2
∑ ∇𝑘
𝑖=0 𝑓𝑖

2. So this is actually 

the final step of our very, not very, but somewhat complicated looking convergence proof and 

now is where the sort of creative part is in interpreting what I have got. So let us interpret the 

result. What is the left-hand side saying? What is the left-hand side, so now we will switch to 

plain English. What is the left-hand side saying? There is an optimum function value which is 

given by 𝑓∗. 

Everyone agrees? I have 𝑓 of the average of iterates. So, what is it saying? The distance between 

𝑓 of the average of iterates and the optimum function value, it is less than or equal to some 

expression. What is that some expression? There is a starting error 𝑥0 − 𝑥∗, so it is like a 

constant. There is 𝛼, it is a constant. 𝑘 + 1, what is it telling me? As I increase my iterations, 

what is happening to this term? It is reducing, reducing. 

Let us say 𝑘 → ∞, what will happen to this term? This term will tend to 0, right? If it tends to 0, 

what will happen to this guy on the left-hand side? It will say that in the average sense, the 

average of the iterates is tending in function value to the optimum 𝑓 value, ok. And this guy on 

the, the second term over here on the right, what about him? We have to make sure what? So 

there is a 𝑘 + 1 also in the denominator. So ∇𝑓 should not blow up. It can grow, but it should not 

grow what? Faster than 𝑘. 

If it does not grow faster than 𝑘, if its growth is less than order 𝑘, what will happen to this term? 

This term will also die as 𝑘 → ∞. So, I am adding smaller and smaller things. The net result is 

the right-hand side is going to be some finite number which keeps decreasing, right. So, this is, 

this proof, it is relatively simple if you look at the other proofs in the literature. 

It is saying that the average of the iterates is converging to the correct function value, ok. So, for 

that to happen, we will just make a quick note of what we discussed. ∇𝑓𝑘 right, must not grow 

faster than order 𝑘, must not grow faster than order 𝑘, ok. And so, this can be satisfied by you 

know things like Lipschitz etcetera, right. 

So, this is not very hard to ensure. So, what is this saying? That the average of the iterates is 

what it is saying, right. Now, what would have been really nice if instead we had 𝑓(𝑥𝑘) − 𝑓∗ ≤ 

or maybe something like this, right. This would have been great, yeah, okay. ∇𝑓 squared should 

not go faster than. Ideally, I would have liked this that as my iterations go 𝑓(𝑥𝑘) and 𝑓∗ should 

come as close to each other as possible. 

This is what we would like. So this proof exists in the literature. It is much more complicated 

than what we did. So I am going to, I am not going to do it. What we have done is that is why 

when I started the proof I said we are going to do a slightly weaker version. The weaker version 

is we are going to prove that the average of the iterates converges. 

Average of the iterates in a long series of 𝑘, what you started out in the beginning is not so 

important, right. You may have 10 points that are far away, but as the operation goes on you may 

come and converge close to the, right. So, this is also true, supposed to be look up. So, the 

average of the iterates is not converging, I am saying in the 𝑓 value of the average of the iterates 

matches the optimum function value. You can imagine a downward like a cup right, the points 



are getting closer and closer and closer as you get to the optimum point over there right, that is 

one way of doing it. 

Okay, so this is your we could say the last proof of the course which at least now when you say 

that you are using the projected gradient descent method you know at least why it works. 

Otherwise it is like you know downloading an algorithm from Wikipedia and implementing it 

without understanding why it works. So at least you have some idea of why it works and you can 

see that in the proof what are the key points? We have basically used properties of convex sets, 

right? So there are courses where you have, you study only convexity and convex functions for 

the entire semester, prove each of those properties very, very laboriously in detail. So we have 

taken a little different approach. Let’s just use those properties to build on and give you some 

interesting results. 

So I’m going to show you just one example of this projection operation. In subsequent classes, 

we’ll come up with a little bit more complicated examples. So the simplest example that you can 

think of is projection onto a feasible set, which is a ball. That’s the first projection example that 

we rotate. So the 𝐿2 ball, yeah, projection is giving me that point in the feasible set closest to the 

point that I am asking. 

So, this is my feasible set. You can see that this is a sphere, right, the sphere in 𝑛 dimensions, 

and I am saying this is my feasible set, 𝑥 must live inside this. Now, so let us just draw a two-

dimensional version of it and I am, here is my point 𝑥0, okay. And what I want to work out is, 

what is, okay. This again looks simple enough that you could solve this problem without any 

calculus, without any Lagrangian business. So when, let us take two cases, when 𝑥0 is in the 

feasible set, projection operation obviously is what? 𝑥0. 

Now, when 𝑥0 is not in this, how do, what is the solution to this problem? It is very simple, 

anyone? Smaller circle okay, but can we draw this with a pencil and ruler? Correct origin, 

exactly. Take the origin, connect it over here and the point over here, right. This is actually what 

we have discussed later, draw circles of bigger and bigger radius from 𝑥0 is going to touch 

exactly over here, right. Now, have a look at this new, can I write this analytically? So, this is 
𝑥0

∥𝑥∥
, which norm? ℓ2-norm obviously. Why? Because this gives me a unit vector in that direction 

and that is exactly what this sphere has, radius 1. 

So, this is our projection operation. Is there a compact way of writing this? No, the two cases, Is 

there a compact way of condensing this? So, basically if I use the max operation, supposing I 

write this as 
𝑥0

max(1,∥𝑥0∥)
, does this work? When 𝑥0 is, when ∥ 𝑥0 ∥ is greater than 1, I am outside, 

then this will give me the unit vector. When I am inside, 1 is greater than the norm of 𝑥0, it gives 

me back 𝑥0. This is your first very very simple example of a projection operation. This was so 

simple that we did not have to actually solve any optimization problem. 

And this is a very useful object in itself. You will come across this in many, many examples. So 

we are done for today. Anything that you would like me to go over once again? So what we did 

was we started with the brief statement of the PGD, right? Some properties of the projection 

operation, how to think of it graphically or geometrically and then we started this proof, right. 

The proof was trying to get a telescoping series that I could sum and along the way I had 

obviously I got 𝑦 and I tried to get rid of 𝑦, I got 𝑥 and then I used my Jensen’s inequality or 



property of convex set and I got that the final expression here that the average of the iterates is 

shown to converge. 

And that is a weaker version, but there is also stronger version. Yeah. The tangent cone, tangent 

cone, the set of all tangents at 𝑦’s and 𝑦’s. Okay. Any, anything that I should clarify once again? 

𝑀, some number. I mean, you mean, where it go? This guy, some number, some finite number 

which is growing slower than 𝑘. 

 

Then as I take the limit 𝑘 → ∞, 𝑓(𝑥𝑘) will tend to 𝑓∗, that is what I want, right. So that is the 

proof which we have not done, but that proof also exists in the literature, you can find it. No, it 

does not imply, this is not the running average because I started from 0. If you wanted to you 

could start from somewhere else. Instead of starting from 𝑥0, you can start from 𝑥100, it is your 

choice. 

Then 𝑥100 will appear on the right-hand side. It is up to you where you want to start the iteration 

counter. The form of the expression will be the same, right. Will PGD work for non-convex 

where the function is itself non-convex or the constraint set is convex? There are two things over 

here to ask about. So which one are you talking about? See the function could be non-convex, 

that is one thing. 

The constraint could be convex, could be non-convex. So this is a, it is a good question. How do 

you define a convex, a convex optimization problem when it is a constraint optimization? Both 𝑓 

and the constraint set. So the constraint set has to be a convex set and the function, objective 

function has to be a convex function. Only when that is the case, this PGD has this nice proof of 

convergence and so on. But if it is a non-convex optimization problem, then you do not have all 

of these nice guarantees. 



Then you have to go case by case and see whether you can make it, whether you can show 

convergence. There is proof for everything. I am not, I have not done it. Of course, there is proof 

for everything. All of these statements as I mentioned if you had a full semester course on this 

convexity you would prove all of these things to go really deep, it is very much possible. 

I think Stephen Boyd’s book which is titled Convex Optimization has all of these proofs, ok. 

Which statement? It is at the top, right? Second statement or second slide. No, it is remember the 

tangent is defined as the limiting direction. Not, I do not take any 𝑧𝑘 − 𝑥, I have to take the 

limiting as 𝑘 → ∞. So, Yeah, 𝑥1 − 𝑦 you mean? Yeah, but it is not, I mean it need not be radially 

inward, but it is perpendicular to the tangent in this case. 

I can draw some funny diagram, but at that point where the projection point is I draw a tangent 

and these two lines are perpendicular. 

I am stating without proof. Correct. Yes, it is. That is what I am saying. I am writing this without 

proof. It is a true statement. You will have to take it on faith and we can, I can refer the proof of 

that. 

No. So, here it is a slightly different route we have taken. The final term which is 
𝛼

2
∇𝑓𝑘

2, there is 

no, it is a positive term, right. And as long as we said ∇𝑓𝑘
2 does not grow faster than 𝑘, it is going 

to be a bounded sum. So, we are not following the authentic proof exactly like that. So, cos𝜃. 

The only thing I mean the only reason I remind you of Zoutendijk’s condition was because of we 

had used the idea of telescoping series that’s all, fine. 


