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Two inequality constraints example 

Okay. So let us further drill this in. Let us take one more example now. Okay. Because in 

constraint optimization the more examples we study the more rooted we will get in the 

understanding. So let us take another example. 

This time let us make the example a little bit more challenging in the sense let us include 

multiple inequalities. Okay. So let us take an example. I am going to take my good old objective 

function 𝑥1 + 𝑥2 and I am going to give your constraints, two constraints in the following way, 

𝑥1
2 + 𝑥2

2 ≤ 2, 𝑥2 ≥ 0. 

So this is like a general problem that has, that comes to you, right. What should be our first step? 

First step is actually very, very simple. It is called, I would say standardize the problem. So in 

standardizing the problem, I need to make sure that all the, remember when we wrote down the 

form, the expression for a constraint optimization, all the inequalities were what? Greater than or 

equal to zero. So let’s convert it into that because if we don’t do it, all our answers will be off by 

a minus sign. 

 

Standard form. So, let us denote this 𝐶1(𝑥) as the first constraint. So, how should I write it? 2 −
(𝑥1

2 + 𝑥2
2) ≥ 0, 𝐶2(𝑥) = 𝑥2, this is already in the standard. So, this is my feasible set. So, we can 

sketch the feasible region quite easily. 



What is it? The first constraint is saying I should be inside the circle. And the second condition is 

saying in the positive 𝑦-plane, right. So, that in fact is. So, this is our, quite easy and the contours 

of the cost function are anyway like this. So, where do you think is the solution? (−√2, 0), right. 

So, I have my point 𝐴, there is another point over here which is also interesting. 

So, let us call it. So, this is (−√2, 0), this. So what we will do is we will look at these conditions 

which we have just formulated now and we will analyze it for both point A and point B and see 

what is the difference between these two guys. So now let’s, since we’re doing this in the 

beginning, let’s write it down everything explicitly, right? So at points A and B, can we say that 

the constraints are active? Right? Are both constraints active at point A and point B? Yes, right? 

So both constraints are active, okay? So, anyway that is bookkeeping okay. Now for there to be a 

feasible direction to move in right, for there to be a, what do I need to happen? I need to have 

feasibility and a decrease in the function, those are the two kind of poles right. So, I had ∇𝑓𝑇𝑑. 

This is less than 0. This gives me what? Decrease of feasibility. Decrease, right? This gives me 

decrease. And feasibility is going to be given by this. This is going to be. Quick question, is this 

second condition like case one or case two of last time? Case two, right? Because the constraint 

is active, right? So let’s just write it like case two. 

Okay, I’ll move to the next page then. Now I want to define the Lagrangian of this problem. So, 

how do I do it? 𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆1𝐶1(𝑥) − 𝜆2𝐶2(𝑥). So if I had 𝑛 constraints, whether they 

were equality or inequality, what do I do? I just keep appending it, right. 

So that is, you will also find a more compact way of writing this. You will find in many places 

this is written either like so, ∑𝜆𝑖𝐶𝑖(𝑥), this is one way and another way is to simply write it as 

𝜆𝑇𝐶, where 𝐶 has all the rows of 𝐶 as the constraints and 𝜆 is a Lagrangian multiplier vector. So, 

this is a more compact way of writing it. Now, in order to find, you know what we have just 

discussed previously, what do I need? If I am at, so I want to investigate whether point A or 

whether point B, how does it look with respect to the condition that we have previously derived? 

The previously derived condition was ∇𝐿 = 0 and 𝜆2𝐶2 = 0, complementarity conditions, right? 

If those were satisfied, we said that what? It’s a candidate, a first order necessary condition for a 

stationary point. 

So these are conditions to be evaluated at some given point in the feasible set. These conditions 

are not going to help you to arrive at a feasible point, that the algorithm will do. But that is why 

we have taken two points for investigation, point A and point B. So at both of these points, let us 

see what do these conditions say. It should work for point A, it should fail for point B. 

So let us see is that actually happening. Okay. So what is our condition once again? So ∇𝐿 with 

respect to 𝑥, 𝜆, this should be 0 and what was the statement 1? and 𝜆1, now it will be 𝜆1 and 𝜆2, 

both should be greater than or equal to 0 because both are inequality constraints, right. So, I have 

𝜆1 ≥ 0, 𝜆2 ≥ 0, this was statement 1. Statement 2 was complementarity. 

Complementarity would say that 𝜆1𝐶1 = 0, 𝜆2𝐶2 = 0. This is complement, right. So, if you had 

more constraints you would just keep expanding so many, if there are 𝑛 inequality constraints 

then you will have 𝑛 complementarity constraints, ok. So, now let us write down a general 

expression for ∇𝐿. What is 𝑓(𝑥)? What is ∇𝑓? We have done this many times, (1,1). 



So, this guy is (1,1), minus 𝜆1. What is ∇𝐶1? Let us look back at how we defined it. It is 
(−2𝑥1, −2𝑥2). So that minus can, that minus will make this guy plus and I have (2𝑥1, 2𝑥2) and 

then I have a minus 𝜆2. 

 

What is 𝐶2? 𝑥2. So its gradient is (0,1). Ok. The minus sign stays there. 

So (0,1). Ok. And I want this to be equal to 0. So, if I want this to be equal to 0, does this look 

like a system of linear equations, right, in either 𝑥1, 𝑥2 or in 𝜆1, 𝜆2 right? So, let me just write it 

here. So, I am going to get 1 + 𝜆2𝜆1𝑥1 and 0, and then I have 1 + 2𝜆1𝑥2 − 𝜆2. This should be 

equal to 0, 0. 

So, now let us do this analysis for point A and point B. So, at A and... So, this is my point A. At 

point A, where is my ∇𝑓 pointing? ∇𝑓 is always pointing in the same direction, (1,1). So, this is 

my ∇𝑓. Which way is ∇𝐶1 pointing? ∇𝐶1 is the interior of the circle. 

So, it is radially inwards, right. So, this is my ∇𝐶1. Which way is ∇𝐶2 pointing? Upwards, (0,1), 
right. So, this is my ∇𝐶2, ok. Now let us, let us start peeling these apart, okay. 

So at point A, so first we will just do the intuitive thing. Let us see is there any intersection 

giving me a feasible direction to move in. ∇𝑓𝑇𝑑 should be less than 0. That means I should be to 

the bottom part away from ∇𝑓, right, this region over here, okay. ∇𝐶1
𝑇𝑑 should be what? Greater 

than or equal to 0. 

So, that is going to give me which region? Right side, right? It is going to give me this region. 

So, is there any intersection of ∇𝑓 and ∇𝐶1? Yes, currently which is the fourth quadrant. The 

fourth quadrant is common. And then comes our second friend ∇𝐶2. ∇𝐶2
𝑇𝑑 should be greater than 

or equal to 0. 



That gives me which? Top half, right. So it gives me this region. Now is there any intersection? 

There is no intersection. So looking at our analysis that we did of the set of feasible directions, 

we can conclude there is no feasible direction. Now let us see if the algebra that we wrote over 

there captures the same thing, ok. 

 

So here. What was the coordinate? (−√2, 0). I can substitute this coordinate into the equation 

that I have over there. So what does it say? I am going to get 1 − 2√2𝜆1 = 0. And the second 

condition is going to give me what? 𝑥2 = 0. So I am left with 1 − 𝜆2 = 0. 

Right? I am just using this condition over here. I substituted the value of 𝑥1, 𝑥2 = −√2, 0. Put it 

into this simple equation and I solve for 𝜆1, 𝜆2. So this gives me 𝜆1 =
1

2√2
 and 𝜆2 = 1, ok. 

That seems ok. Why? Because. Because the Lagrange multiplier should be positive because it is 

an inequality. So that seems to be satisfying my statement 1, right? So over here. If I choose 

these values of 𝜆1 and 𝜆2, statement 1, right? Statement 1 was this guy over here. Obviously, the 

way I derived it was by setting ∇𝐿 = 0. That’s how I got these values of 𝜆1 and 𝜆2 in the first 

place. 

So I’ve satisfied that. 𝜆1 ≥ 0, yes. 𝜆2 ≥ 0, yes. What about the complementarity conditions? It’s 

an active constraint. 

So 𝐶1, 𝐶2 are anyway zero. So I don’t care. This is automatically satisfied. So you can see that 

what I very tediously arrived at by drawing half-spaces and shading their intersection and all, I 

can see I’m just, by algebra I’m getting it, right? So this is, I can put a tick mark. This point at 

(−√2, 0) is giving me a set of legitimate Lagrange multipliers. First order conditions are 

satisfied. Therefore, as a necessary thing, I can say point A satisfies the necessary conditions for 

being a stationary point. 



Now, let us hope that this whole thing fails for point B. So, at point B my directions are like so, 

draw this over here, ok. So, we are sitting, this is a terrible, draw the circle first, okay, and now 

we are sitting over here at this point. 

∇𝑓 is (1,1). This is ∇𝑓. ∇𝐶1 is radially inwards pointing towards the circle. This is ∇𝐶1. And my 

∇𝐶2, which was ∇𝐶2? (1,0,1), right. So this guy is pointing over here. 

 

This is my ∇𝐶2. So, ∇𝑓𝑇𝑑 should be less than or equal to 0 for improvement, that means I should 

be somewhere in this region, ok. ∇𝐶1
𝑇𝑑 should be greater than or equal to 0, that means where 

should I be? In the left half of this point, right. So, I should be here. So, there is so far I am 

seeing an intersection over here, right, that which is there. In fact, it is an interesting space 

because it is going to be bounded over here and then like this, right. 

So, it is a different, like a paper folded like that. And ∇𝐶2
𝑇𝑑 ≥ 0, where am I? Top half, right? So 

that is this region. Is there an intersection? Yes, that intersection actually, if I shade it with 

yellow, is going to give me, oops, something like this, right? And that makes sense, right. You 

can imagine that if your algorithm started from point B, for example, I know the solution is A, I 

need to move towards A, and this cone is giving me a legitimate direction to move towards A, 

right. So, that is what I expect from all this tedious drawing of planes and so on. 

Now, let us see what the algebra does, ok. So, what will I get over here when I substitute (√2, 0) 

into this equation? So, I am going to get 1 here, just the sign will flip over here. This is going to 

be the first one and this is going to be the second one. So, implies that 𝜆1 = −
1

2√2
 and 𝜆2 = 1. 

So, what has failed us? This guy, the first guy has failed us. So, now this is a way by which we 

are translating our geometric intuition into algebra. 

And the moment I do convert it to algebra, it is easy for me to then code it, right. So this is my 

sort of proof that B is not a stationary point, right. So you notice that this example was really 



very, very straightforward, right? It had a very simple objective function. It had two inequalities. 

And what we did was, and what you should keep in mind as you try to solve problems in the 

future, first get it into standard form so that the inequalities are all in the way that you are 

familiar with, i.e., greater than or equal to zero, right? And your algorithm has given you some 

points to consider. 

And at those points, we are trying to evaluate whether or not the conditions which we derive 

hold. The conditions being gradient of the Lagrangian equal to 0 and the complementarity 

condition, right. So, then we basically looked at, we started with the definition of the Lagrangian. 

As many inequalities and equalities are there, those many Lagrange multipliers get added. 

That is my big hefty Lagrangian. It looks big, but it is actually very simple. I am just 

mechanically adding terms after each other. And I look at these two conditions and I can see that 

the conformation between geometry, the intersection of half planes, and algebra has given me a 

proof, right. So A, should I, what should I say? A, should I say A is a stationary point? Strictly 

speaking, can I say A is a stationary point? If I were being very, very pedantic. 

I should actually say is a candidate. This problem is very simple. I know A is the stationary 

point. That’s because I drew it and calculated it explicitly. But I should say A is a candidate for 

a. This is nothing fancy. In the world of unconstrained optimization, if I found a point where 

∇𝑓 = 0, I didn’t say that this is the minima of the problem. 

Okay, if I define a stationary point as ∇𝑓 = 0, it’s a stationary point, but it may be a maxima 

also. So, actually, wait, this is a candidate. It is a stationary point. We should say it’s a candidate 

for a minimum point. We will not be doing it in this course, but like we had in the case of 

unconstrained optimization, first order gave me necessary conditions. Where did I get my 

sufficient conditions from? Second order. So in constrained optimization also there is a Hessian-

based sufficient condition. 

If we get time, we will go into it. Otherwise, we will work mostly with first order conditions. 

Any questions on this? So, the next thing that we want to talk about is kind of an opposite step 

from what I just discussed. What I just discussed was geometry got confirmed by algebra. I had 

some intuition of geometry of intersecting half-planes and I confirmed that with algebra. Now, in 

what we will talk about next, I will show you that there is a problem with this sort of dance 

between algebra and geometry. 

So, let us, to get this into more formal language, let us define a few things, okay. These 

directions that we just computed previously on the example, we call them feasible directions, 

right. 


